MANUAL DE CONDUCCIÓN DE VIDAS

ANTONIO IBACAHE G., INGENIERO AGRÓNOMO
SUBESTACIÓN EXPERIMENTAL VICUÑA

ARTURO LAVÍN A., INGENIERO AGRÓNOMO
SUBESTACIÓN EXPERIMENTAL CAUQUENES

IVÁN MUÑOZ H., INGENIERO AGRÓNOMO M.SC.
ESTACIÓN EXPERIMENTAL LA PLATINA

GONZALO SEPÚLVEDA R., INGENIERO AGRÓNOMO PH.D.
SUBESTACIÓN EXPERIMENTAL VICUÑA

JORGE VALENZUELA B., INGENIERO AGRÓNOMO PH.D.
ESTACIÓN EXPERIMENTAL LA PLATINA

PROGRAMA FRUTALES Y VIÑAS

ESTACIÓN EXPERIMENTAL LA PLATINA
SANTIAGO—CHILE, 1988
INDEX

CONCEPTOS GENERALES 5
ESPALDERA VERTICAL 7
CRUCETA CALIFORNIANA SIMPLE 11
CRUCETA INCLINADA 15
DOBLE CRUCETA 16
DOBLE CORTINA GENOVESA 18
PARRONAL ESPAÑOL 22
PARRONAL ELQUINO 27
SISTEMA EN CABEZA 28
MATERIALES REQUERIDOS PARA CINCO SISTEMAS DE CONDUCCION 30
CONCEPTOS GENERALES

Debido a su hábito de crecimiento, la vid no crece satisfactoriamente sin algún sistema de conducción, concepto que comúnmente se confunde con la poda.

La conducción se define como la forma o disposición que se da a las diferentes partes de la planta de acuerdo a diversos tipos de estructuras de sostén que condicionan la altura del tronco, la dirección de los brazos, los elementos de poda y la exposición del follaje a la luz solar.

La poda modifica o mantiene el tamaño de la planta, de ahí que cualquier tipo de poda se adapta a los diferentes sistemas de conducción.

Los objetivos fundamentales que se persiguen con la conducción son:

- permitir que cada variedad exprese libremente su potencial de desarrollo.
- ajustar la poda al hábito de fructificación de la variedad.
- hacer un eficiente uso de la luz directa o difusa, para conseguir adecuada fructificación de yemas.
- facilitar las labores del viñedo: paso de maquinaria, riego, poda, desinfecciones, cosecha.
- reducir la probabilidad de daños por heladas al dar mayor altura a las plantas.
- obtener fruta de buena calidad.

En un cultivo tan antiguo y extensivo como la vid, se han ideado un sinnúmero de formas de conducción. Las más usadas en Chile pueden ser clasificadas en tres grupos: en cabeza, espaldera (verticales y con crucetas) y parrales o pérgolas. Cualquiera de ellas se puede usar, excepto cuando las condiciones locales no lo permiten.

Entre los factores que se deben considerar para elegir un determinado sistema de conducción, los más importantes son: la variedad, la topografía del terreno y la maquinaria.

De la variedad es necesario conocer:

- el hábito de fructificación, el cual determina el largo del elemento de poda (cargador pitón, etc) y
- el vigor, este indica la mayor o menor altura y expansión requerida para lograr una adecuada exposición a la luz. Se debe tener presente que un sistema de conducción no siempre puede ser utilizado para todas las variedades, debido a que éstas presentan diferente vigor.

Respecto a la topografía, es preciso tomar en cuenta la pendiente, y las posibilidades de nivelación.

En terrenos planos y plano inclinado es posible utilizar un parronal, una espaldera u otro sistema dispuesto en rectángulo o en cuadrado.

Si la topografía presenta cierta pendiente y el suelo es de poca profundidad, que no permita nivelación, puede optarse por una plantación en curvas a nivel conducida en espaldera, cruceta californiana o alguna que se adapte a esas condiciones de diseño. En las mismas circunstancias, se puede utilizar el parronal siempre que se riegue por goteo,
aspersión o cuando es viable la confección de curvas a nivel entre las hileras.

Por último, en algunos casos, en el momento de la elección es necesario tener presente el tipo de maquinaria con que se cuenta o proyecta usar en el manejo del cultivo. Así, por ejemplo, el sistema de conducción deberá ajustarse a las especificaciones de la cosechadora mecánica, especialmente en uva para vino.

Todo sistema de conducción requiere de estructuras de soporte. Existiendo dos tipos: los de corto período y los permanentes.

Los soportes de corto período utilizados en vides conducidas en cabeza (poda en cabeza), proveen sostén hasta que las plantas alcanzan el vigor y rigidez suficiente para sostenerse solas (6 a 10 años, dependiendo de la variedad, altura del tronco y zona de producción). Los soportes permanentes son usados en espalderas y parronales, durante toda su vida productiva.

Ambos tipos de soportes, hacen posible obtener rápida y económicamente una planta bien formada, con un tronco recto y vigoroso que no interfiera con las labores culturales u otras operaciones del viñedo.

En este manual se describen algunos de los sistemas de conducción que se utilizan en Chile.
Descripción

La espaldera es el tipo de estructura de conducción más utilizado en la vid. Básicamente se compone de una línea de postes o rodri-gones colocados cada cierta distancia y sujetos en los extremos por cabezales (Figura 1).

El cabezal es el poste que va en cada extremo de la hilera. Este debe ser muy resistente, con un diámetro mínimo de 4 ó 6 pulgadas y de un largo apropiado a la altura del sistema a implantar. Entre ellos, cada 4 a 6 m se colocan los postes centrales (rodri-gones) que, generalmente, son de 3 a 4 pulgadas de diámetro y de un largo que considere la altura del sistema más lo necesario para enterrar, por lo general 50 a 70 cm, dependiendo del tipo de suelo.

El cabezal se pone inclinado, siendo el ángulo óptimo de 45° con respecto a la superficie del suelo. Para mantenerlo en esta posición, se debe colocar un alambre (rienda) que amarra el cabezal con un "muerto o ancla", el cual va enterrado a una distancia adecuada para formar un triángulo isósceles con la altura a que va puesto el alambre de formación.

Tanto el cabezal como el muerto no van enterrados a una profundidad fija, ésta depende de la altura total del sistema; pero normalmente fluctúan entre 0,8 y 1,0 m. Mientras más alto sea el sistema, mayor deberá ser la profundidad a que se entierren; sobre todo si la localidad donde se establezca, presenta vientos fuertes o suelos arenosos o pedregosos.

Si no se dispone de cabezales de un largo adecuado, se podrá utilizar postes más cortos, siempre que tengan el diámetro requerido; en este caso, la altura de los alambres estará determinada por el primer rodri-gón, que para este efecto se acerca más al cabezal.

Los alambres se ubican a lo largo de la hilera de postes y las alturas que normalmente se utilizan son: 0,9 m para el primer alambre y 1,2 m para el segundo. En variedades vigorosas, es necesario agregar un tercer alambre, el cual se ubica a 1,5 m de altura. En este sistema es aconsejable que el primer alambre sea acerado ya que tendrá que sostener la madera (brazos) y la producción.

Otra alternativa en el sistema de espaldera es utilizar alambres móviles, los que se van subiendo en la medida que la planta crece (Figura 2). Esta disposición de los alambres, aumenta mucho la eficiencia facilitando el manejo del viñedo. Es un sistema muy efectivo cuando las distancias entre hileras son reducidas o cuando se transforman viñas ya plantadas, en las que por distancia entre hileras no es posible colocar crucetas.

La gran ventaja de los alambres móviles es que permite eliminar la envoltura del follaje, tradicional en las espaldareras verticales, y sobre todo la chapuda, práctica muy perjudicial para la planta.

Para la formación de la planta en espaldera, es aconsejable poner a cada una un tutor y amarrar a él el brote elegido que constituirá el futuro tronco. Otra alternativa más económica, es colocar una amarra de plástico o cualquier otro material, al primer alambre que sirva de guía al brote nuevo.
Una vez que el brote elegido ha sobrepasado la altura del primer alambre, se puede seguir dos alternativas: una es decapitar el brote 4 a 10 cm sobre el alambre, para inducir la formación de brotes anticipados o "feminelas", los que formarán los brazos de la planta. La otra alternativa, es dejar crecer libremente el brote durante toda la temporada de crecimiento y en el invierno siguiente podar 5 a 10 cm bajo el alambre para que, en la primavera, los brotes que salgan de las yemas principales se utilicen como brazos. Estos brotes generalmente son más vigorosos que las feminelas, por lo cual los futuros brazos de la planta serán de mejor calidad (Figuras 3a y 3b).

Los brazos y cargadores frutales se disponen en el primer alambre y los superiores (2º y 3º), sólo se utilizan como soporte para los brotes que se desarrollarán durante la primavera.

Las distancias empleadas comúnmente entre hileras en viñedos en espaldera son entre 2, 2,5 y 3 m. Deben usarse siempre las que permitan el paso de un tractor, a lo menos del tipo viñatero.
Figura 2. Espaldera vertical con alambres móviles.
Figura 3. Espaldera vertical. a) Formación en una temporada; b) en dos temporadas.

Condiciones en que se utiliza

El sistema de conducción en espaldera puede emplearse en trazados rectos, en terrenos planos o semiplanos y en curvas de nivel, cuando existen pendientes pronunciadas. En el último caso este sistema, o cualquier otro, no funcionará en forma perfecta ya que es difícil tensar adecuadamente los alambres.

Es aconsejable su empleo en condiciones de crecimiento limitado, como podría ser en algunas variedades finas para vino y que presentan un bajo vigor, lo que no justificaría la inversión en sistemas más caros.

Es conveniente su utilización en regiones con climas húmedos, ya que la mayor ventilación y menor sombreado (comparado con el parronal) disminuye la incidencia de enfermedades de tipo fungoso (Botrytis, por ejemplo).
Para uvas destinadas a pasas o vino, en las cuales la presentación de la fruta fresca es de poca importancia, se puede utilizar con éxito la espaldera de 2 ó 3 alambres.

Ventajas
- Toda la fruta se ubica en el mismo nivel, lo cual permite una exposición uniforme. Los brotes sobre la fruta proporcionan cierta protección bajo severas condiciones de viento y temperatura.
- Aunque se utiliza principalmente en variedades para vino, también se puede emplear en variedades de uva para mesa.
- Los costos de construcción son menores que en los demás sistemas.
- Se utiliza adecuadamente en terrenos inclinados, donde no es posible el empleo de sistemas de conducción altos, como es el parronal.

Desventajas
- Por la gran densidad de plantas por hectárea, produce abundantes cosechas durante los primeros años.
- Limita el desarrollo de las plantas, lo que es común observar en variedades vigorosas conducidas en espaldera.
- La exposición del follaje a la luz solar y por ende los rendimientos, son inferiores que en los otros sistemas de conducción.
- Por tratarse de un sistema de baja altura, las plantas están más expuestas a daños por heladas.
- Las labores del viñedo se dificultan, principalmente, por trabajos adicionales como envoltura y chapoda.

CRUCETA CALIFORNIANA SIMPLE

Descripción

La cruceta simple o sistema Lenz Moser, comúnmente denominado espaldera californiana, es una espaldera en la cual los alambres superiores van sujetos por una cruceta horizontal de 0,6 a 0,8 m de longitud (Figura 4).

Los postes que se utilizan van ubicados sobre la hilera a una distancia de 4 a 6 m como máximo y deberán ser de un grosor de 3 a 4 pulgadas de diámetro y 2,2 a 2,5 m de largo. Cada uno de estos postes lleva una cruceta (Figura 5).

En los extremos de cada hilera van los cabezales cuyo grosor y longitud son similares a los utilizados en las espalderas.

Este sistema lleva un alambre a lo largo de la hilera a 1,3 ó 1,4 m de altura y sobre él a 0,3 ó 0,4 m va ubicada la cruceta.

Las estructuras de la planta (brazos, cordones) y los elementos de poda son sostenidos por el primer alambre (acero), descrito anteriormente. La vegetación de la temporada se abre y se ubica por encima de los alambres de cruceta, dejándola colgar libremente.

Con este sistema de conducción se le forman, a la planta, sólo dos brazos o cordones, similares a los de la espaldera vertical (Figura 6).

Las distancias entre y sobre hileras más usadas son: 2 x 3; 2,5 x 3 y 2 x 3,5 m; dependiendo fundamentalmente de la variedad que se trate y de las condiciones de suelo.

Condiciones en que se utiliza

La cruceta puede emplearse con éxito en casi todas aquellas condiciones en que es posible utilizar la espaldera vertical.

Se adapta a uva para vino y a ciertas variedades de uva para mesa. En este último caso; es aconsejable emplear postes más largos que los usados en la espaldera vertical, con el objeto de elevar la zona productora de fruta y así facilitar el alcance de los racimos durante el arreglo, raleo y cosecha, operaciones que deben realizarse por ambos costados de la hilera.
Ventajas
- Permite exponer una mayor superficie foliar a la luz que la espaldera vertical, lo cual implica mayor crecimiento y fructificación.
- La fruta se ubica más o menos a la misma altura, lo que facilita las pulverizaciones y la cosecha.
- Por ser un sistema más alto que la espaldera vertical se disminuyen las probabilidades de daño por heladas. Además, se logra una buena circulación de aire, disminuyendo los riesgos de enfermedades, especialmente de tipo fungoso.
- En general, permite obtener producciones superiores a las de una espaldera tradicional.

Desventajas
- La cosecha manual se complica, debido a que los brotes cuelgan libremente desde los alambres de la cruceta y el cosechador debe trabajar entre ellos.
- El control de malezas sobre la hilera es más difícil que en el caso del parrón, por no dar suficiente sombra, factor que ayuda al autocontrol.

CRUCETA INCLINADA

Descripción
Es una variante de la cruceta simple, usada con gran éxito en California, para la producción de uva de mesa, donde reemplaza totalmente al parronal español.

El sistema es similar a la cruceta simple, pero la cruceta va inclinada y desplazada hacia un lado (Figura 7) y sobre ella van 3 ó 4 alambres para el follaje. La parte más alta se orienta en contra de la dirección en que llegan los rayos solares para que el follaje impida su acción directa sobre la fruta, evitándose daños por golpe de sol.

La fruta cuelga a una altura uniforme y es posible un manejo fácil de ella.

Figura 7. Cruceta inclinada.
Descripción

También es un sistema en espaldera, semejante a la cruceta simple, con la diferencia que, en el lugar donde va ubicado el primer alambre se dispone de una cruceta horizontal de 0,6 a 0,8 m de largo, en cuyos extremos va un alambre acerado. Sobre esta primera cruceta a 0,1 ó 0,2 m va ubicada una segunda de 1,0 a 1,2 m que también lleva alambres en sus extremos (Figura 8).

Los alambres de la primera cruceta soportan los brazos o cordones y los elementos de poda. Los de la segunda sirven para que la vege-

tación que crece durante la temporada pase sobre ellos y cuelgue libremente.

Es muy importante que la distancia entre los alambres de ambas crucetas no sea superior a 0.4 m de modo que la vegetación pueda pasar sin problemas por los alambres de la segunda cruceta.

Este sistema permite formar cuatro brazos o cordones, dos en cada uno de los alambres de la primera cruceta (Figura 9), de tal manera que se pueda duplicar el número de yemas dejadas a la poda, en comparación a la cruceta simple. Con esto, se logra un importante incremento de la producción.

La doble cruceta se adecua muy bien a uva de mesa, especialmente a las variedades de color.

Las ventajas, desventajas y condiciones en las cuales se puede utilizar, son similares a las de la cruceta simple.

Descripción

Es un sistema creado en la Estación Experimental de Geneva, en el Estado de Nueva York, para aumentar la exposición a la luz de variedades de *Vitis labrusca*.

La doble cortina se diferencia de los sistemas en cruceta, en que no se usan alambres de formación y follaje separados, sino que lleva una cruceta con dos alambres de formación, generalmente a mayor altura, 1,7 a 2,2 m y el follaje cae desde éstos libremente. La postación es similar a las espalderas pero con cabezas y centrales generalmente más altos.

Cada poste de la hilera lleva entre 1,7 y 2,2 m de altura, una cruceta de 1,2 a 1,5 m de ancho. En ambos extremos de la cruceta, va un alambre acerado donde se ubican los brazos de la planta y se disponen los elementos de poda que darán la vegetación y producción (Figura 10).

La cruceta de 2 x 3 pulgadas debe ser lo suficientemente firme, ojalá de roble u otra madera resistente, para soportar el peso de la fruta y vegetación que va en los alambres.

Para formar la planta existen tres posibilidades:

a) La original del sistema, que consiste en conducir el brote principal o futuro tronco de una planta, hacia uno de los alambres de la cruceta donde se decapita para inducir la formación de brotes laterales, que constituirán los brazos o cordones. La planta siguiente se conduce hacia el alambre opuesto a la planta anterior. Es decir, se va alternando en la hilera la conducción de la planta hacia uno u otro de los alambres de la cruceta (Figura 11).

b) La segunda es que, desde la base de cada planta, se dejan brotes que se conducen hacia ambos alambres de la cruceta, de manera que la planta tenga dos troncos. Cuando los brotes llegan a los alambres, se procede de igual manera que en el caso anterior (Figura 12).

c) La última de las modalidades es la más utilizada en Chile. Se basa en la conducción de un solo brote (un tronco) y a 1,5 - 1,6 m de altura se decapita para inducir la formación de dos brotes laterales. Estos se dirigen a cada alambre de la cruceta. Cuando los brotes laterales llegan a los alambres, se decapitan para formar en la temporada siguiente los brazos o cordones (Figura 13).
Figura 10. Doble cortina genovesa.
Figura 11. Doble cruceta genovesa conducida alternadamente. Sistema original.

Figura 12. Doble cortina genovesa formada con dos troncos.
En cualquiera de los sistemas de formación que se adopte, la vegetación que se origine de los elementos de poda dejados sobre los brazos o cordones, colgará libremente hacia el suelo formando una "cortina" a lo largo y a ambos lados de la hilera.

Las ventajas y desventajas de la doble cortina son similares a los sistemas en cruceta, con la diferencia que el nivel de producción es mayor que en los sistemas descritos anteriormente, debido a que hay una mayor exposición de las yemas basales, que originarán las futuras producciones, a la luz solar.

Además, es estrictamente necesario que los cabezales y centrales sean muy resistentes y la estructura muy bien construida, por la gran tensión y peso que debe soportar el sistema.

Las condiciones en que se puede utilizar este sistema son las mismas que para el de cruceta.
Descripción

Las plantaciones experimentales y comerciales en algunos lugares del mundo, han demostrado la importancia de obtener el máximo de superficie foliar expuesta a la luz solar. El parronal español favorece dicha exposición.

En este sistema, las plantas son conducidas sobre alambres cruzados, lo suficientemente altos como para facilitar el paso de la maquinaria bajo ellos.

Los cabezales se ubican a lo largo de los cuatro costados del parronal y se unen en las esquinas con postes más gruesos denominados “esquineros”. En el contorno de cada cuartel, uniendo los cabezales entre sí y a su vez éstos a los esquineros, se encuentra una “cadena” formada por 2 ó 3 alambres acerados (Figura 14).

Los postes centrales o “rodrigones” están unidos a los respectivos cabezales de los extremos de cada hilera, por una hebra de alambre acerado llamada “maestra” la que se encuentra a una altura de 2 ó 2,1 m sobre el nivel del terreno, de tal manera que cada rodrión queda unido a cuatro cabezales. Los rodriones van sujetos a las maestras por un trozo de alambre blando conocido como “guatana”, que los traba fijándolos en su posición, es decir, en la intersección de las maestras (Figura 15).

La tensión de la cadena y las maestras, debe ser suficiente para sostener el peso de la fruta, follaje y dar resistencia contra el viento.

Con el objeto de reforzar la estructura, evitar que cuelguen los brotes de las plantas y hacer óptima el área foliar expuesta a la luz direc-
Figura 15. Parronal Español. Detalle de la amarra del rodrigón a las maestras.

El material utilizado para los muertos es variable. En aquellos lugares donde es fácil obtener piedras de buen tamaño y peso, se usa ese material. En cambio, donde no es posible, puede usarse bloques de concreto de diversas formas. Es importante tener presente que el peso de los muertos debe ser de alrededor de 30 kg o más, pues son ellos los que soportan la mayor tensión.

En el caso de utilizar piedras como muertos, el alambre de la rienda se dispone de tal forma que rodee la parte central de ellas, cuidando que no se mueva hacia los costados. Los bloques de concreto tienen un anillo hecho de fierro de construcción, que forma parte de la estructura del bloque, del cual se amarra el alambre, haciendo mucho más fácil la labor. El anillo es conveniente pintarlo con antioxidante.

Para formar las plantas, el brote que dará origen al tronco se guía por el rodrión y una vez que ha sobrepasado unos 5 a 10 cm sobre el alambre, se decapita para inducir el desarrollo de brotes laterales o futuros brazos. Estos se eligen de brotes ubicados bajo el alambre. Así en una temporada es posible tener cuatro brazos por planta y en la temporada siguiente de cada brazo un sub-brazo. Sobre ambas estructuras se disponen los elementos de fructificación (Figura 17). Esta formación se consigue en dos años sólo en localidades donde el parronal tenga un largo periodo de crecimiento y el manejo, especialmente del riego, sea óptimo. En otras situaciones al período de formación es más largo.

Figura 17. Parronal español. Disposición de los elementos de fructificación.
Las distancias de plantación adecuadas para un parronal son: 4 x 4; 3,5 x 3,5 y 3 x 3 m, teniendo presente que la distancia entre las hileras debe ser suficiente para permitir el paso de un tractor y sus implementos.

El tamaño de los cuarteles es variable; pueden hacerse parronales de 0,5 hasta 5 ha. No es recomendable levantar cuarteles de mayor superficie, para evitar que el peso de la fruta y la vegetación los destruya. Se debe tener especial cuidado en el tamaño de un cuartel, cuando el parronal se establece en terrenos con alguna inclinación u ondulaciones.

Los cuarteles pueden estar separados por caminos de 7 a 8 m de ancho, dependiendo de la forma del predio, a través de los cuales circulan los colosos durante la cosecha. No se usan caminos cuando la forma de los cuarteles es rectangular y se unen por los extremos, por lo que las hileras de cabezales van juntas.

Ventajas

- Permite a las variedades expresar todo su vigor natural y podarlas de acuerdo a su hábito de fructificación. El mayor tamaño alcanzado por el tronco y el mayor número de brazos y sub-brazos, conlleva una gran acumulación de sustancias de reserva para producir cosechas de buena calidad.

- En uva destinada a la exportación se facilitan las aplicaciones de reguladores de crecimiento —ácido giberélico por ejemplo— y las labores de anillado, raleo y arreglo de recimos.

- Los racimos quedan siempre a la vista con un buen acceso de los desinfectantes y a la vez protegidos de golpes de sol, que es una exigencia del mercado de exportación.

- Facilita la selección de la fruta, durante la cosecha, según las exigencias de exportación y requerimientos del mercado.

- Por tratarse de un sistema alto de conducción, las plantas están más protegidas contra las heladas.

Condiciones en que se utiliza

Es apropiado para terrenos planos o ligeramente inclinados. En terrenos con una pendiente que impida el trazado de surcos de riego en línea recta, deben hacerse en curvas a nivel. Hay que considerar eso sí, que esta última alternativa es una limitante al uso eficiente del sistema.

El parronal se utiliza principalmente en vides de mesa destinadas a la exportación. Sin embargo, en el Norte Chico, se usa con bastante éxito en variedades cuyo objetivo es la elaboración de Pisco y en la VI y VII Región, es común su uso en variedades destinadas a la elaboración de vino.

Es necesario que las variedades que van a ser conducidas en parronal sean vigorosas, en caso contrario, será difícil su formación a la altura en que se encuentran los alambres.

Desventajas

- Es difícil de construir y con costos de implantación superiores a otros sistemas.

- Si bien pareciera tener una buena exposición a la luz, presenta ciertas limitaciones, ya que la primera capa de hojas es la que recibe la mayor insolación y la madera que queda bajo ellas recibe poca luz.

- El período improductivo es mayor que en otros sistemas, cuando las plantas no alcanzan la altura de formación en la misma temporada de plantación.

- Las labores de poda y cosecha se dificultan debido a la mayor altura de los alambres.
En muchos casos el sombreado excesivo producido por el follaje, favorece el desarrollo de enfermedades de tipo fungosas. Este problema se puede disminuir mediante la apertura de "ventanas" sobre el follaje, para promover una mayor circulación de aire y entrada de luz. Además, el sombreado produce problemas de falta de fructificación de yemas en variedades de alto requerimiento de luz.

PARRONAL ELQUÍNO

Descripción

Es una forma tradicional de conducción en el Valle de Elqui y se caracteriza por su empleo en terrenos con pendientes pronunciadas, especialmente en laderas de cerros.

Consiste en hileras de postes separados por una distancia aproximada de 4 m sobre la hilera y 3 m entre hileras.

Los postes están unidos entre las hileras por varas de alrededor de 3,5 m de largo. Sobre ellas se disponen 6 a 7 alambres entre 0,4 y 0,5 m uno del otro. Estos alambres forman el enmallado, que soporta la vegetación y la carga frutal. A la altura de 1,5 m, a lo largo de la hilera, va ubicado un alambre acerado (Figura 18).

![Figura 18. Parronal elquino. Disposición de postes, varas y alambre.](image-url)
Los postes pueden ser de 4 x 4 pulgadas con una longitud de 3 m y enterrados a 0,8 m. El alambre del enmallado puede ser del Nº 14.

Las plantas se ubican sobre la hilera a una distancia variable. En el Valle de Elqui es común encontrar viñedos antiguos con plantas separadas a 0,2 ó 0,3 m, pero el vigor y desarrollo de ellas es muy limitado. Es recomendable una distancia de 1 a 2 m empleando la mayor distancia en variedades vigorosas.

La planta se forma guiando un brote hasta que sobrepase unos 0,5 m de altura del alambre acerado, decapíándolo luego para estimular la formación de brotes laterales. Los brazos en número de 2 a 4, se ubican en los dos primeros alambres del enmallado y en ellos se encuentran los elementos de poda que llevarán la fruta (Figura 18).

Condiciones de uso

El parronal elquino se ha utilizado preferentemente en uvas destinadas a la elaboración del pisco y pasas. Sin embargo, debido a la gran exposición al sol que se logra con este sistema, es posible obtener uva de exportación de excelente calidad, que posiblemente se cosechará temprano en la temporada.

SISTEMA EN CABEZA

La conducción en cabeza es el más antiguo de los sistemas usados, teniendo gran cantidad de variantes dependiendo de los países e incluso de la zona vitícola de cada país.

En general, se puede describir como un sistema de conducción que no requiere elementos permanentes de sostén, ya que esta función la cumple la misma planta una vez que logra un desarrollo suficiente como para autosoporlar su estructura.

En los primeros años es necesario usar elementos temporales de sostén o tutores para darle una altura y forma inicial a las plantas (Figura 19). El tiempo que se utilicen tutoras dependerá del desarrollo de las plantas, en el que influirán las condiciones locales, la variedad y el manejo que se de al viñedo.

En variedades vigorosas este sistema es bastante eficiente, lográndose muy buenas producciones, sobre todo en buenos suelos.

En general, con el sistema en cabeza se tiene a sobrepodar las plantas, lo que se traduce en una permanente "vuelta atrás" al cortar siempre cercano a la cabeza.

Se ha demostrado que dicha práctica limita el potencial productivo, luego la poda debe tender a dar la forma de vaso o gobelet, lo que da a la planta mayor cantidad de centros de producción. Podada así, se logra una mayor altura, y se evita la concentración de heridas en la cabeza. Se impide además que la planta se debilite y sufra ataques de enfermedades fungosas.
Espaldera Vertical.
Distancia plantación: 3 x 2 m.

<table>
<thead>
<tr>
<th>Materiales</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plantas</td>
<td>1.666</td>
</tr>
<tr>
<td>Cabezas 4’ x 2,8</td>
<td>132</td>
</tr>
<tr>
<td>Rodrigones 3’ x 2,2</td>
<td>618</td>
</tr>
<tr>
<td>Alambre acerado 17/15</td>
<td>160 kg</td>
</tr>
<tr>
<td>Alambre galvanizado Nº 6</td>
<td>70 kg</td>
</tr>
<tr>
<td>Alambre galvanizado Nº 12</td>
<td>326 kg</td>
</tr>
<tr>
<td>Grapas 1’</td>
<td>5 kg</td>
</tr>
</tbody>
</table>

Cruceta Californiana Simple.
Distancia plantación: 3 x 2 m.

<table>
<thead>
<tr>
<th>Materiales</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plantas</td>
<td>1.666</td>
</tr>
<tr>
<td>Postes 4’ x 2,5</td>
<td>687</td>
</tr>
<tr>
<td>Crucetas roble</td>
<td>276</td>
</tr>
<tr>
<td>Alambre acerado 17/15</td>
<td>500 kg</td>
</tr>
<tr>
<td>Alambre galvanizado Nº 6</td>
<td>70 kg</td>
</tr>
<tr>
<td>Alambre galvanizado Nº 10</td>
<td>50 kg</td>
</tr>
<tr>
<td>Fierro 6 mm</td>
<td>35 kg</td>
</tr>
<tr>
<td>Grapas 1’</td>
<td>5 kg</td>
</tr>
</tbody>
</table>

Sistema de Doble Cruceta.
Distancia de plantación: 3 x 2 m.

<table>
<thead>
<tr>
<th>Materiales</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plantas</td>
<td>1.666</td>
</tr>
<tr>
<td>Postes 4’ x 2,5 m</td>
<td>687</td>
</tr>
<tr>
<td>Crucetas roble</td>
<td>276</td>
</tr>
<tr>
<td>Alambre acerado 17/15</td>
<td>500 kg</td>
</tr>
<tr>
<td>Alambre galvanizado Nº 6</td>
<td>70 kg</td>
</tr>
<tr>
<td>Alambre galvanizado Nº 10</td>
<td>50 kg</td>
</tr>
<tr>
<td>Fierro 6 mm</td>
<td>35 kg</td>
</tr>
<tr>
<td>Grapas 1’</td>
<td>5 kg</td>
</tr>
</tbody>
</table>

Doble Cortina Genovesa.
Distancia de plantación: 3 x 2 m.

<table>
<thead>
<tr>
<th>Materiales</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plantas</td>
<td>1.666</td>
</tr>
<tr>
<td>Postes 4’ x 3 m</td>
<td>680</td>
</tr>
<tr>
<td>Cruceta roble 1,20 x 2’ x 1’</td>
<td>221</td>
</tr>
<tr>
<td>Alambre acerado 17/15</td>
<td>320 kg</td>
</tr>
<tr>
<td>Alambre galvanizado Nº 6</td>
<td>70 kg</td>
</tr>
<tr>
<td>Alambre galvanizado Nº 12</td>
<td>170 kg</td>
</tr>
<tr>
<td>Fierro 6 mm</td>
<td>35 kg</td>
</tr>
<tr>
<td>Grapas 1’</td>
<td>5 kg</td>
</tr>
</tbody>
</table>
Parronal Español.
Distancia de plantación: 4 x 4 m.

<table>
<thead>
<tr>
<th>Materiales</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plantas</td>
<td>625</td>
</tr>
<tr>
<td>Esquineros (6’ x 7’ x 3,20)</td>
<td>4</td>
</tr>
<tr>
<td>Cabezales (5’ x 6’ x 3,00)</td>
<td>100</td>
</tr>
<tr>
<td>Rodrigones (3’ x 4’ x 2,40)</td>
<td>625</td>
</tr>
<tr>
<td>Alambre acerado 17/15</td>
<td>300 kg</td>
</tr>
<tr>
<td>Alambre galvanizado Nº 6</td>
<td>120 kg</td>
</tr>
<tr>
<td>Alambre galvanizado Nº 14</td>
<td>700 kg</td>
</tr>
<tr>
<td>Alambre galvanizado Nº 10</td>
<td>25 kg</td>
</tr>
<tr>
<td>Grapas 1’</td>
<td>10 kg</td>
</tr>
<tr>
<td>Anclas cabezales concreto</td>
<td>110</td>
</tr>
</tbody>
</table>