Un ensayo experimental en la X Región demostró que al ensilarse praderas en condiciones normales el uso de un aditivo biológico tiene un impacto muy reducido y sólo en factores secundarios.

Es necesario conocer el efecto de nuevos aditivos en ensilajes y la respuesta en la producción de carne.

Enrique Siebold Sch.
Ingeniero Agrónomo

Ljubo Goic M.
Ingeniero Agrónomo M.S.

Mario Matzner K.
Perito Agrícola

INIA Remehue

Los sistemas ganaderos más rentables se fundamentan en un alto grado en la producción de forraje y un proceso de conservación eficiente.
EL ENSILAJE DE PRADERA

En el sur de Chile los sistemas pecuarios de producción presentan costos relativamente bajos en alimentos, cuando el sistema aplicado se fundamenta en un alto grado en la producción de forrajes. Ello conduce a lograr sistemas de producción de mayor rentabilidad. Persiguiendo dicho objetivo, la reducción del uso de concentrados (y por lo tanto de los costos) implica realizar un proceso de conservación de forraje eficiente, de tal forma de obtener un alimento de alta calidad. Por condiciones de clima, la forma más factible de lograrlo es a través del ensilaje, aunque existen algunas limitaciones. Las más determinantes son la baja concentración de la materia seca y de los carbohidratos solubles en el forraje: la concentración de materia seca debería ser de alrededor del 25% y el contenido de carbohidratos solubles del 3% de la materia verde, para que la fermentación sea buena. Cuando el forraje a ensilar no cumple con éstos, el uso de aditivos posibilita lograr una buena preservación de los ensilajes. Al ensilar por corte directo sin marchitar, con uso de aditivos, investigadores extranjeros han observado menores pérdidas de materia seca con respecto al método tradicional.

Por su fácil manejo, por su costo y por ser inocuos, los aditivos biológicos se están expandiendo universalmente. En el Centro Regional de Investigación (CRI) Remehue, al comparar el Forager (aditivo basado en bacterias que producen ácido láctico: *Pediococcus acidilactici*, *Streptococcus faecium* y *Lactobacillus plantarum*, además de enzimas estimulantes y un factor antioxiestróidal) con un aditivo químico, se observó una respuesta similar en ganancia de peso y en los índices de laboratorio, y ambos aditivos con una clara tendencia a mejorar la respuesta en relación al testigo sin aditivo: 0,369; 0,515 y 0,620 kg/animal/día de ganancia de peso para el grupo testigo, Forager y aditivo químico, respectivamente.

En un estudio efectuado en Chile, también se observó una buena respuesta animal en novillos al suplementar con grano, cuando éstos consumen ensilaje de avena más aditivo biológico (Elizalde y otros, 1991). Luego de la investigación ya indicada del CRI Remehue, este centro continuó al año siguiente estudiando el aditivo biológico para así precisar su efectividad frente a un testigo sin aditivos, al ensilar una pradera mixta de gramíneas con trébol blanco. Además, se probaron dos niveles de suplementación con concentrado, para ver la interacción entre concentrado y aditivo. El experimento se ejecutó en las instalaciones del Departamento de Producción Animal del Centro Regional de Investigación Remehue, y contó con el auspicio de Shell Chile S.A. La investigación se inició en octubre de 1991 rezagando las praderas para ser ensiladas y se terminó con la evaluación con animales en agosto de 1992.

El estudio comprendió las siguientes pruebas o tratamientos:
1. Ensilaje sin aditivo, sin suplemento.
2. Ensilaje sin aditivo, con suplemento.
3. Ensilaje con Forager, sin suplemento.
4. Ensilaje con Forager, con suplemento.

El suplemento usado correspondió a 2,5 kilogramos de avena por animal al día, presentando este grano un contenido de proteína total muy similar a los ensilajes. Por otra parte, a todos los animales se
les suplementó con 80 g de sales minerales al día.
Se trabajó con 35 terneros holandeses, de 200 a 240 kilogramos de peso inicial. Cada grupo se manejó en un corral semiabovenado, con cama caliente próxima al comedero, y una superficie de cada corral de 72 metros cuadrados. Se utilizó pradera de tipo permanente, fertilizada en otoño con 74 unidades de fósforo (P₂O₅) y en primavera con 25 unidades de nitrógeno, usándose superfosfato triple y salitre sódico. Se rezagó a mediados de octubre por un período de 50 días. La cosecha se realizó el 2 y 3 de diciembre. Al momento del corte, las especies gramíneas presentes en la pradera estaban en estado de bota, inicio de espigadura.
Los silos usados fueron de tipo parva con losa de concreto, tapados con polietileno y tierra.
El aditivo Forager se empleó en dosis de 10 g en 2.5 litros de agua por tonelada de forraje verde.
Para medir la calidad de la pradera y del ensilaje se controlaron diversos parámetros, en distintas etapas del ensayo:
En la pradera se midió la producción de materia seca, composición botánica, valor «D», contenido de proteína total y verdadera, pared celular (F.D.N.), contenido de azúcares solubles y minerales. Estos factores definen el volumen y calidad del forraje que se ensilará.
En el silo, una vez abierto, se muestreó cada 14 días el perfil fresco del ensilaje, tomando seis muestras en total. En cada muestreo se determinó: materia seca, nitrógeno total, proteína verdadera, nitrógeno amoniacal, pH, valor «D», FDN, energía metabolizable (a partir del valor «D»), carbohidratos solubles y minerales, parámetros que miden la calidad del ensilaje.
En los animales, cada 14 días se midió el incremento de peso y el consumo de materia seca, factores que también son importantes para evaluar la calidad del ensilaje.

Resultados
Al momento del corte, la pradera presentó una disponibilidad de 3.7 toneladas de materia seca por hectárea, siendo la composición botánica dominada por ballicas, las que aportaron en verde un 55 por ciento del forraje. El trébol aportó un 12 por ciento, otras graminéas un 12 por ciento, malezas de hoja ancha un 15 por ciento y un 6 por ciento de material muerto.
La calidad del forraje fue de media a alta, considerando el estado en que se cosechó la pradera y de acuerdo a los análisis realizados (Cuadro 1). Se aprecia un valor de mediano a alto en proteína, un buen valor de digestibilidad de la materia orgánica (Valor «D»), aspectos que tienen relevancia en el buen comportamiento animal. El contenido de azúcares o carbohidratos solubles es alto, está por encima del 3 por ciento sobre la base de forraje fresco (Cuadro 1), que es el porcentaje requerido para una buena fermentación. Este aspecto incide en la buena conservación de material ensilado, no haciéndose tan importante el uso de aditivos.
En cuanto a los ensilajes, presentaron una concentración de materia seca...
Cuadro 3
Respuesta de los terneros en kilogramos de ganancia diaria frente al uso de aditivo y avena grano como suplemento (kg/animal/día). Periodo de 70 días (4-6 al 13-8-1992)

<table>
<thead>
<tr>
<th>Tratamientos</th>
<th>Tipo ensilaje</th>
<th>Testigo</th>
<th>Con aditivo</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sin suplemento</td>
<td>0,400</td>
<td>0,407</td>
<td>0,404</td>
<td></td>
</tr>
<tr>
<td>Con suplemento</td>
<td>0,816</td>
<td>0,858</td>
<td>0,857</td>
<td></td>
</tr>
<tr>
<td>Promedio</td>
<td>0,608</td>
<td>0,653</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cuadro 4
Consumo de ensilaje (kg m.s./animal/día)

<table>
<thead>
<tr>
<th>Tratamientos</th>
<th>Tipo ensilaje</th>
<th>Testigo</th>
<th>Con aditivo</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sin suplemento</td>
<td>4,38</td>
<td>4,10</td>
<td>4,24</td>
<td></td>
</tr>
<tr>
<td>Con suplemento</td>
<td>3,75</td>
<td>3,72</td>
<td>3,74</td>
<td></td>
</tr>
<tr>
<td>Promedio</td>
<td>4,07</td>
<td>3,91</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bastante baja, lo cual podría haber afectado el proceso fermentativo (Cuadro 2).

No se detectó efecto del aditivo en el contenido de nutrientes e indicadores de calidad, salvo en el pH, que es más bajo al usar aditivo, y en una tendencia a un menor contenido de nitrógeno amoniacal (N-NH₃). Este último sirve de escala de valoración, siendo ensilajes de buena calidad los que tienen menos de 10% de N-NH₃.

Además, los ensilajes con baja concentración de materia seca requieren un menor pH para lograr una buena preservación.

Ambos ensilajes son de mediana a buena calidad, considerando el valor «D» y por tener un contenido de nitrógeno amoniacal inferior a 10 por ciento. Al ser la calidad de los ensilajes bastante similar, el uso de aditivos no se refleja en el comportamiento de los animales (Cuadro 3). Las ganancias de peso fueron relativamente buenas y están de acuerdo a la calidad de los ensilajes.

Al suplementar con 2,5 kilogramos de grano de avena se logró una respuesta significativa debido esencialmente al mayor aporte de energía, puesto que el nivel de proteína del grano de avena es muy similar a los obtenidos en ensilajes. Este mayor aporte de energía es el resultado de un mayor consumo total de materia seca; es decir, consumo de ensilaje más los 2,5 kg de grano. No se aprecia ningún efecto en consumo por uso de aditivos (Cuadro 4).

Al agregar el consumo de avena a los animales que recibieron suplemento, el consumo total expresado como materia seca se incrementó a 5,95 kilogramos diarios.

El grano de avena utilizado presentó un 88,5 por ciento de materia seca, un 12,6 por ciento de proteína y un valor «D» de 68.

Debido a la mayor ganancia de peso de los animales que recibieron suplemento, éstos presentaron un mejor índice de eficiencia de conversión (6,94 kilogramos de materia seca por kilogramo de peso aumentado, en relación a 10,5 logrado por los animales no suplementados).

Conclusiones

- Al usar aditivo biológico Forager en ensilaje de praderas permanentes se determinó sólo un efecto en disminución de pH y una leve disminución del nitrógeno amoniacal.

- En consumo de materia seca y en ganancia de peso tampoco se determinó un efecto del aditivo. En consecuencia su uso no se justifica cuando el estado de la pradera y las condiciones climáticas permiten lograr ensilajes con buenos parámetros fermentativos.

- Al suplementar con grano entero de avena se observó una clara respuesta en ganancia de peso, tanto en los animales que consumían el ensilaje testigo, como el con aditivo.

Bibliografía recomendada:

Centro Regional de Investigación Remelux. Boletín Técnico Nº 172. 31 p.