FRUTALES: LABOR DE SUBSOLADO DE SUELOS COMPACTADOS

Con la finalidad de romper las zonas compactadas del perfil del suelo, antes de la plantación de un frutal o parronal y en huertos establecidos que con los años muestran evidencias de compactación, la labor con un arado subsolador es una práctica habitual para recuperar el crecimiento de las plantas afectadas.

Jorge Carrasco J.
Ingeniero Agrónomo, Dr.
jcarrasco@inia.cl

Sofía Felmer E.
Ingeniera Agrónoma

Gamalier Lemus S.
Ingeniero Agrónomo, M.S.
INIA Rayentuén

Juan Pastén D.
Ingeniero Agrónomo
Trical Sudamericana Ltda.

En la zona comprendida entre las regiones de Valparaíso y del Libertador Bernardo O’Higgins, uno de los problemas serios derivados del manejo de huertos frutales es la compactación subsuperficial debido al tránsito excesivo de la maquinaria agrícola, que incluye las labores de rastraje con discos entre las hileras. La compactación es mayor en suelos más arcillosos y con mayor grado de humedad.

En suelos de textura franco arenosa a franco arcillosa, se ha constatado que la compactación afecta el desarrollo de raíces desde 0 a 45 cm de profundidad y en un ancho de 30 a 50 cm desde la huella de tránsito del neumático del tractor.

Con la finalidad de romper las zonas compactadas del perfil del suelo, antes de la plantación de un frutal o parronal y en huertos esta-blecidos que con los años muestran evidencias de compactación, la labor con un arado subsolador es una práctica habitual para recuperar el crecimiento de las plan tas afectadas. Esta herramienta remueve y suelta el suelo en profundidades, lo que mejora sus condiciones estructurales y capacidad de retención de humedad.

Arado subsolador

El subsolador es un equipo de preparación de suelos que se caracteriza por el número de escarificadores, o la profundidad de trabajo que define el tamaño del implemento. Consta de un marco portaherramientas o chasis, de construcción robusta, donde van montados dos a tres brazos de fierro, separados entre sí a distancias generalmente mayores a 50 cm, capaces de penetrar a profundidades superiores a 30 cm.
En frutales establecidos, el rompimiento de la capa compactada permite que el agua de riego infiltre hacia la zona de raíces. De esta forma se facilita la expansión radial y la extracción eficiente de nutrientes y agua. Además, se mejora la aireación del suelo con lo que se agiliza el intercambio gaseoso y la actividad microbiana sobre la materia orgánica.

El subsolador también se usa en la construcción de túneles de drenaje en terrenos arcillosos con problemas de acumulación de agua en el perfil de suelo. Para ello, en la parte posterior de la bota se instala un "balin topo" unido por una cadena. Cuando el suelo está con un contenido de humedad superior a capacidad de campo, el trabajo se facilita ya que el tractor requiere menos potencia.

Por ejemplo, suelos de la Serie Laguna plantados con ciruelo europeo en el sector Santa Inés de La Laguna, en San Vicente de Tagua-Tagua, Región de O’Higgins, se caracterizan por presentar un nivel fráctico alto en invierno y primavera. Incluso en verano la napa de agua puede estar presente a los 60 cm de profundidad. En estas condiciones, y dada su baja densidad aparente por el alto porcentaje de materia orgánica presente en el suelo, es conveniente construir drenes en el subsuelo a salidas de invierno, utilizando un subsolador y "balin topo", para evacuar los excesos de agua hacia los sectores más bajos.

Regulaciones del subsolador

Nivelación: En el buen funcionamiento del arado subsolador es importante la posición de la unidad de rotura con respecto al nivel del suelo, en sentido transversal y longitudinal.

Ruedas del tractor circulando al interior del surco de aradura en la preparación de suelos de un terreno. Una de las razones del problema de compactación subsuperficial o pie de arado.

Riendo para ello tractores de elevada potencia.

Para romper compactación de suelos en terrenos plantados con frutales y reducir un excesivo corte de raíces de las plantas, se utiliza normalemente un arado subsolador compuesto por un brazo rígido de perfil rectangular recto, de 80 a 100 cm de largo. En el extremo inferior del brazo se une, con tornos, la bota o pie que es la que quiebra el suelo endurecido de las capas inferiores, produciendo grietas que se distribuyen lateral y verticalmente que llegan hasta la superficie. La cara anterior del brazo presenta un filo de cuchilla para reducir la resistencia que ofrece el suelo al avance del arado.

La bota o pie, estructura maciza de aproximadamente 35 a 45 cm de largo y 8 x 10 cm de sección, en su frente de corte lleva una punta intercambiable, con un ángulo de inclinación diseñado para facilitar la penetración del arado en el suelo. Este elemento protege a la bota del efecto abrasivo del terreno, alargando su vida útil.

Muestra de una labor de subsolado con un contenido de humedad adecuado, para cumplir con el objetivo de romper la capa compactada.

Evidencia de una labor de subsolado ineficiente por exceso de humedad en el suelo. OBSérvese en una calicata las marcas verticales dejadas por el paso de un subsolador de dos puntas, sin rompimiento lateral del terreno.
En sentido transversal, el chasis o estructura porta herramienta debe mantener un plano paralelo con el terreno, de manera que la unidad de rotura penetre verticalmente en el suelo.

En sentido longitudinal, el chasis garantiza que la unidad de rotura mantenga el ángulo de penetración diseñado por el fabricante. En los subsoladores integrales (conectados a los brazos del tractor), la regulación se logra modificando la longitud del brazo superior del sistema de levante hidráulico del tractor. Este tipo de nivelación se comprueba caminando paralelamente al tractor e implemento durante la realización de la labor, observando que este último no vaya inclinado hacia atrás ni hacia adelante.

Profundidad de trabajo: para regular la profundidad de trabajo, es fundamental regular la profundidad de la unidad de rotura en función de las características del perfil del suelo y de su grado de compactación. Luego, para determinar la profundidad y espesor de la capa compactada, antes de la labor y dependiendo de la variabilidad del suelo y del área de trabajo, es necesario hacer una o más calicatas separadas a una distancia de 50 a 100 m. En ambas paredes perpendiculares al sentido del niego de las calicatas, en los horizontes del suelo, se mide la resistencia que opone el suelo a la penetración de un cuchillo de punta aguzada. También se debe observar la presencia de raíces de malezas, las cuales si están ausentes o creciendo hasta una cierta profundidad y después lateralmente, indican la existencia de algún impedimento físico. Una forma segura de establecer presencia de suelo compactado es tomar una muestra sin distorsionarla, en la profundidad donde se sospecha la presencia de una capa compactada, y se envía a un laboratorio de suelos para análisis de densidad aparente y de macroporosidad.

Por ejemplo, si se ha constatado que la capa compactada se ubica desde 0 a 60 cm de profundidad y que el mayor grado de compactación está entre los 40 y 50 cm, lo recomendable es subsolar a los 45 cm, para lo cual, al largo total del brazo del subsolador, en un supuesto de 80 cm, se restan los 45 cm. La diferencia entre ellos (35 cm) corresponde a la parte del brazo del implemento que debe sobresalir desde el suelo. Para lograr esta condición se debe marcar esta medida con una tiza en el brazo del implemento, y accionar el sistema hidráulico del tractor, el cual hace coincidir la bota con la zona compactada. La marca con tiza permite a un segundo operador visualizar si se está trabajando a una profundidad menor o mayor a la establecida.

Es importante que la punta de la bota del subsolador se ubique en la zona media del área compactada, con el objeto de provocar estallamiento en la zona exacta, al operar el tractor e implemento. Una profundidad mayor o menor que la indicada no cumple con el objetivo establecido. Para comprobar que la profundidad de la labor es la correcta, se recomienda medirla con una vara graduada en centímetros. Para facilitar la medición se aconseja extraer con una pala las capas de suelo removidas por el subsolador.

Requerimientos de potencia del tractor

En la labor de subsolado los requerimientos de potencia son en general muy altos, en particular si
los suelos están muy compactados o si la labor debe hacerse a gran profundidad. Normalmente sobre 90 HP, y superior a 100 HP si la profundidad es de 60 a 70 cm.

La velocidad de trabajo también influye sobre la demanda de potencia. Esta debe ser relativamente baja (4 a 6 Km/hora), no siendo conveniente realizar la labor con una velocidad mayor, porque de esa forma aforan a la superficie capas de suelo improdutivas, y además se dañan el sistema de riego y el sistema hidráulico del tractor. Si se reduce la velocidad a menos de 4 Km/h, es posible subsolar con tractores de menor potencia.

La mayoría de las veces, en suelos para replanteo o para la plantación de un frutal, se debe subsolar en estado de baja humedad (entre un 5 a un 15%) y en ocasiones casi seco, lo cual obliga a usar equipos de mayor potencia, como buldog D6 o D8 con orugas, que permiten usar tres subsoladores, lo que aumenta la capacidad de trabajo y de preplantación y en el periodo de postcosecha, en el cual se han suspendido los riegos, en el caso de un frutal establecido. Si se realiza la labor con suelo húmedo, lo único que se conseguirá es cortar y no producir el resquebrajamiento deseado, por lo cual la labor será ineficiente.

Una vez realizada la labor, es recomendable hacer una calicata sobre una línea de subsolar y en forma perpendicular a ésta. Una vez abierta, si la labor ha sido eficiente, se observarán grietas laterales y en profundidad a partir del punto por donde pasó la bota del subsolador; por el contrario, si ha sido ineficiente, se apreciará marcada en la pared de la calicata la pasada del brazo del subsolador y la correspondiente bota, sin observarse grietas laterales ni en profundidad.

En huertos establecidos, el subsolado se recomienda para recuperar el crecimiento de las plantas cuando existe un grado de compactación que no permite otra alternativa de manejo.

Trabajos realizados por INIA han demostrado que el subsolado es una práctica recomendada para romper capa compactada en frutales, si la labor se hace en la época y profundidad recomendada, y con los equipos más adecuados.