Uso de Biofiltros para mejorar la calidad del agua de riego

Editores:
Francisco Tapia F.
Abelardo Villavicencio P.

Proyecto FONSA C3-81-07-42
“Establecimiento y evaluación de biofiltros para reducir la contaminación difusa en aguas de riego de las regiones VI y VII”

Santiago de Chile
2007
Uso de Biofiltros para mejorar la calidad del agua de riego

Editores: Francisco Tapia F. Abelardo Villavicencio P.

Proyecto FONSAG C3-81-07-42

“Establecimiento y evaluación de biofiltros para reducir la contaminación difusa en aguas de riego de las regiones VI y VII”

Santiago de Chile
2007
Autores de los capítulos:
Jerez B., Jorge. Ingeniero Agrónomo, Ph.D. INIA Carillanca.
Mejías B., Jaime: Ingeniero Agrónomo, Ph.D. INIA Carillanca.
Peralta A., José María. Ingeniero Agrónomo, Ph.D. INIA Carillanca.

Director Responsable:
Carlos Fernández B.
Director Regional INIA La Platina

Boletín INIA Nº170.

Cita bibliográfica:

ISSN 0717–4829

Permitida su reproducción total o parcial citando la fuente y los autores.

Corrección de textos: Marisol González Y. Ing. Agr., M.Phil. INIA La Platina.
Corrección técnica: Comité Técnico del proyecto.
Diseño y diagramación: Ideograma Ltda.
Impresión: por definir
Cantidad de ejemplares: 1.000

Santiago, Chile, 2007.
PROFESIONALES DEL SERVICIO AGRÍCOLA Y GANADERO
SUPERVISORES Y PARTE DEL COMITÉ TÉCNICO DEL PROYECTO

Orellana L., Pablo. Ingeniero Civil Industrial. FONSAG. SAG Santiago.

OTRAS PROFESIONALES Y TÉCNICOS DE INIA QUE PARTICIPARON COMO
INVESTIGADORES O AYUDANTES DE INVESTIGACIÓN

Riquelme S., Jorge. Ingeniero Agrónomo, Dr. INIA Raihuén.
Collado, Christian. Ingeniero Ejecución Agrícola. INIA Rayentué.
Roa S., Juan. Laborante. INIA La Platina.
Gálvez L., Ximena. Técnica Química. INIA La Platina.
Fuentes V., Marcela. Técnica Química. INIA La Platina.
Bourke, Michael. Ingeniero Forestal. INIA La Platina.
9. Biofiltros y su eficiencia en la remoción de sólidos .. 84
10. Evaluación de la estrata herbácea y arbórea de los biofiltros .. 90
11. Conclusiones y recomendaciones .. 96
 11.1. Conclusiones ... 96
 11.2. Recomendaciones ... 97

TERCERA PARTE. ANEXOS Y GLOSARIO
Anexo 1. Protocolo para el establecimiento y manejo de biofiltros 101
Anexo 2. Fichas técnicas de establecimiento y mantenimiento de los biofiltros 105
 Fichas técnicas para biofiltros conformados por una estrata herbácea, más arbustos y/o árboles .. 105
 Fichas técnicas para biofiltros conformados solamente por una franja de pasto 116
Anexo 3. Fotografías ... 124

Glosario ... 126
AGRADECIMIENTOS

Los editores del presente Boletín desean expresar sinceros agradecimientos, en primer término, al Fondo SAG, del Servicio Agrícola y Ganadero, por creer en esta iniciativa y proveer el financiamiento necesario para el desarrollo de la investigación.

El estudio no hubiera sido posible sin la decidida colaboración de los agricultores de la VI y VII Región, en particular de los señores Claudio Palma; Juan Lyon; Raúl Lyon; Fernando Meneses; Juan Pablo Mujica, Director del Liceo Agrícola “El Carmen”, de San Fernando; Adolfo Galaz; Pedro Lorenzini; Angélica Edwards, y Hernán Avilés. Agradecemos su participación en el proyecto, ya que en sus predios se realizaron las evaluaciones que la investigación requería.

También queremos agradecer a las asociaciones de regantes y juntas de vigilancia de las regiones del Maule y del Libertador Bernardo O’Higgins, en especial a los señores Claudio Vergara, Robert Hilliard, Carlos Echazarreta y Diego Castro, por el apoyo prestado y por haber sido el nexo entre el proyecto y sus asociados, para todas las actividades de difusión.
PRÓLOGO

El estudio y control de la contaminación difusa de las aguas de riego constituye uno de los grandes desafíos ambientales de Chile. Este problema emerge principalmente como una consecuencia de actividades rurales, agrícolas y silvícolas. Puede definirse como una alteración de la calidad de las aguas, expresada sobre todo a través del incremento en el contenido de sólidos en suspensión, nutrientes y otras sustancias disueltas (sales y compuestos orgánicos), y presencia de compuestos biotóxicos como residuos de plaguicidas.

Los biofiltros constituyen una alternativa de control para remover los contaminantes difusos del agua de riego. Corresponden a asociaciones vegetales de diferentes especies, dispuestas en franjas. Se ubican a los pies de los potreros de cultivo, en forma perpendicular al avance del agua y paralela a un desagüe o cauce. Su función es filtrar y retener en diferentes grados los contaminantes transportados por el agua.

Las especies vegetales usadas para formar estas asociaciones pueden ser árboles, arbustos o pastos, que tengan la propiedad de filtrar contaminantes provenientes de la escorrentía superficial en los campos de cultivo. Las asociaciones de vegetales se consideran zonas de transición entre los cultivos y los cursos de agua. En ellas se conforman complejos ecosistemas que entregan un hábitat propicio para el buen desarrollo de microorganismos, habitantes comunes del suelo que participan en la degradación o retención de contaminantes difusos.

El presente Boletín Técnico resume cuatro años de una investigación cuyo propósito fue evaluar el comportamiento de biofiltros en la remoción de diversos contaminantes difusos de origen agrícola. A partir de los resultados, entrega recomendaciones para su establecimiento y mantenimiento.

La información se dirige a profesionales relacionados con la actividad silvoagropecuaria, a instituciones públicas que requieren información básica para la toma de decisiones en el desarrollo de normativas para el sector, a estudiantes y agricultores, ya que se dispone tanto de antecedentes conceptuales como de procedimientos aplicados.
PARTE I
ANTECEDENTES GENERALES
1. INTRODUCCIÓN

En el mundo se observa una creciente contaminación del suelo y de las aguas de riego, provocada, entre otras causas, por el uso intensivo de insumos agrícolas y de tecnologías muchas veces no amigables con el ambiente, producto de la necesidad de generar cada día mayores cantidades de alimento para satisfacer los requerimientos de la población. Nuestro país no está exento de esta problemática.

La agricultura intensiva, de altos rendimientos, depende de la incorporación de fertilizantes y pesticidas. Así entre 1965 y 1995 el uso global de fertilizantes nitrogenados se incrementó siete veces, y el de fósforo (P) 3,5 veces. Se espera que la utilización de ambos aumente tres veces más de aquí al año 2050. Sin embargo, la eficiencia de los fertilizantes indica que los cultivos extraen sólo entre el 30 y el 50% del nitrógeno (N) aplicado y cerca del 45% del P. El resto se pierde, especialmente el N, contaminando las aguas superficiales y profundas. El ecosistema se ve seriamente afectado. Además, se produce eutrofización y disminución de oxígeno (O₂), lo cual pone en riesgo la población de peces, y daña la salud humana y animal. Hoy se reconoce la asociación existente entre el consumo de agua con elevados niveles de nitratos (NO₃) y cánceres gástricos (Tchernitchin, citado por CONAMA, 2002).

Cabe destacar que los mercados de la Unión Europea y Norteamérica están normando la calidad de los productos a partir del nivel de elementos contaminantes en las aguas de riego. Así fortalecen la seguridad alimentaria de su población, con productos limpios e inocuos para la salud humana. Estas condiciones podrían limitar las actuales y futuras exportaciones, con el consiguiente daño económico para el país.

Adicionalmente, la pérdida de suelo por arrastre de partículas ha venido afectando la sostenibilidad de los espacios agrícolas, ya que no se han desarrollado estrategias de protección predial contra este fenómeno y sus consecuentes pérdidas de fertilidad.

A partir de la situación descrita aparece el concepto de los “biofiltro” o “buffer ecológico ribereño”: aprovechando características de ciertas plantas, se constituyen asociaciones vegetales aptas para frenar de manera significativa el arrastre de partículas de suelo suspendidas en el agua de riego y capaces de extraer los contaminantes difusos asociados.

El tema se integra en el ámbito de la contaminación ambiental vinculada a la producción agrícola. Contar con esta tecnología, sin duda, constituirá un impacto importante, contribuyendo a mejorar la calidad de las aguas de riego y la calidad de los productos, mediante el desarrollo de protocolos de manejo agronómico basados en el concepto de una agricultura limpia.
2. CONTAMINACIÓN DIFUSA DE LAS AGUAS CONTINENTALES
Sergio González Martineaux

2.1. IMPORTANCIA DE LAS AGUAS CONTINENTALES
Las aguas continentales, entre las que se encuentran las “dulces” (< 500 mg l⁻¹ sales solubles), las “oligohalinas” (500 a 3.000 mg l⁻¹ sales solubles), las “mesohalinas” (3.000 a 16.000 mg l⁻¹ sales solubles) y las “polihalinas” (16.000 a 30.000 mg l⁻¹ sales solubles; Odum, 1983), constituyen un recurso natural renovable pero limitado. Son crecientemente escasas, por sufrir un permanente conflicto de intereses debido a su condición de recurso esencial, no sólo para la mantención de los procesos vitales, sino también para las demás actividades humanas.

Si se toma en cuenta que el 71% de la superficie terráquea está cubierta por agua, se tiene a concluir erróneamente que el mundo es rico en ella, cuando en realidad la dotación apta para el consumo de los seres que viven sobre y fuera del mar no excede del 3% del total planetario (AWWA¹). Además, de ese 3% sólo 1/6 es accesible al uso humano. Las restantes 5/6 partes –correspondientes a casquetes polares y glaciares de montaña– son de difícil acceso.

Si se toma en cuenta el consumo humano, lo aprovechable es aún menor: sólo el 0,6% del 3% antes mencionado (equivalente al 0,02% de la dotación hídrica planetaria) presenta características adecuadas (figura 1). Se trata del agua contenida en lagos, ríos y acuíferos (AWWA¹, OMS²).

Figura 1. Proporción de las aguas dulces, en el total de las aguas de la Tierra (www.awwa.org/docs/p12/publicaciones12-1.html)

1 Tomado de: http://www.farm.org.ar/docs/p12/publicaciones12-1.html
2 Tomado de http://www.who.int/eater_sanitation_health/vector/water_resources.htm
2.2. CONTAMINACIÓN DE LAS AGUAS CONTINENTALES

La existencia de un ciclo cerrado y repetido (figura 2) genera la falsa impresión de que es posible acceder a este recurso cada vez que se requiera y sin límites. Sin embargo, el fuerte crecimiento poblacional y el acelerado desarrollo económico de una sociedad que no asume todavía el criterio básico del desarrollo sostenible, han desencadenado un proceso de inutilización de las aguas continentales. Ello redunda en una pérdida adicional de sus opciones de uso, proceso conocido como contaminación hídrica, que corresponde a la pérdida –parcial o total– de sus capacidades, como consecuencia de una incorporación –directa o indirecta, voluntaria o accidental– de materias (sólidas, líquidas, gaseosas) o energía (calor, radiaciones) o combinaciones de ambas, en cantidad y duración tales que sobrepasan sus posibilidades naturales de absorción y autodepuración.

La contaminación hídrica impone una larga serie de efectos negativos en los cuerpos o cursos receptores de materias residuales de actividades humanas, que redundan en una menor disponibilidad de aguas dulces de calidad adecuada. Entre los impactos, debe mencionarse:

- Una degradación de los sistemas biológicos asociados a los cuerpos/cursos de agua.
- Una reducción hasta la desaparición de las distintas poblaciones acuáticas.
- Una transmisión de enfermedades entre seres vivos, por contacto e ingesta de aguas contaminadas.

3 Crecer sin destruir la base natural.
- Una reducción significativa de los usos potenciales del agua (vida acuática, riego, recreación, otros).
- Un notorio aumento del costo de producción de agua potable.
- Una sensible pérdida de belleza escénica y del potencial económico de uso turístico o recreativo.
- Se sabe que los procesos de contaminación de las aguas continentales4 presentan dos modalidades:
- Los originados por fuentes fijas, cuando se trata de sitios puntuales de descargas de aguas residuales (generalmente residuos industriales/mineros líquidos y aguas servidas); corresponde a la contaminación por fuentes fijas.
- Los originados por una multiplicidad de pequeñas descargas, cuyos aportes no están localizados y no son continuos, y donde el acceso de las aguas residuales a los cursos/cuerpos de agua es por derrame o filtración a través de los suelos, dentro de una cuenca. Ésta es la contaminación difusa, estrechamente vinculada a las actividades silvoagropecuarias.

2.3. ORIGEN DE LA CONTAMINACIÓN DIFUSA

La contaminación difusa es aquel proceso de cambio de la composición natural de un cuerpo/curso de agua, con consecuencias negativas sobre su calidad, que se origina en la recepción de una multiplicidad de pequeñas descargas de aguas residuales, dentro de un escenario ambiental con las siguientes características:
- Las acciones causales ocurren en predios rurales y están asociadas a actividades de producción (cultivos, ganadería, silvicultura) o de deforestación.
- Las actividades se repiten periódicamente, aunque no siempre desde los mismos sitios.
- No se generan puntos fijos de descargas de aguas residuales, sino que tienden a derramar y percolar desde sitios diversos, actuando de manera no necesariamente periódica.
- Las acciones causales pueden ser ejecutadas a distancia variable de los cuerpos/cursos de agua receptores.
- Individualmente, cada acción es de baja magnitud, por lo que el aporte individual contaminante tiende a ser imperceptible.
- La no ocurrencia de una acción determinada no queda reflejada en una mejoría inmediata de la calidad hídrica.

La contaminación difusa se establece por la sumatoria de pequeños aportes individuales imperceptibles, desde sitios diversos, que se repiten con cierta periodicidad por períodos temporales prolongados, generándose con ello efectos acumulativos. Una característica básica de la contaminación difusa es que sus efectos no son locales, sino que tienden a afectar toda una cuenca hidrográfica, incluyendo el área marina asociada. La figura 3 presenta un esquema simplificado de este proceso de degradación de las aguas ambientales.

4 Estos procesos son, también, válidos para las aguas marinas.
La alteración de las aguas responde a la incorporación de substancias y partículas removidas de los suelos cultivados, y derivadas de explotaciones ganaderas. Obviamente, el riego aplicado sin criterios conservacionistas es un factor coadyuvante del proceso de contaminación difusa, tanto por sinergizar la movilidad y dispersión ambiental de substancias y partículas generadas por otras acciones productivas, como por favorecer la remoción de partículas edáficas.

En la contaminación difusa, las aguas de una cuenca pueden sufrir cambios de tipo y magnitud diferentes, de acuerdo a la localización relativa de las áreas cultivadas, de la intensidad de las acciones de producción, y del tiempo transcurrido. En el caso de las aguas superficiales, los principales cambios tienen que ver con:

- Incremento en la concentración de nutrientes disueltos (nitrógeno y fósforo, principalmente), acelerando el proceso de eutrofication, lo que es crecientemente importante en función del tiempo de residencia de las aguas en los cuerpos que las cobijan.
- Presencia de residuos de plaguicidas, algunos disueltos y otros insolubles, adheridos a materias sólidas suspendidas.
- Incremento de los sólidos en suspensión (básicamente, partículas removidas de los suelos por procesos erosivos), conllevando una mayor turbidez de las aguas y capacidad abrasiva en movimiento.

La remoción de partículas edáficas potencia los problemas vinculados a nutrientes y residuos de

Figura 3. Esquema simplificado del proceso de contaminación difusa de aguas continentales.

5 Un cuerpo hídrico está naturalmente siendo eutroficado, proceso que engloba todos los cambios que va experimentando y que lleva a un estado final de pantano y ulterior desecamiento (Bucheck, 1990; Méndez, 1992). Su avance natural es lento e imperceptible al ojo humano. Al aumentar la concentración de nutrientes, especialmente fósforo, el proceso se acelera y se producen cambios perceptibles al ojo humano: mayor turbiedad, agotamiento del oxígeno disuelto, crecimiento de vegetación pantanosa en las orillas. El proceso acelerado es conocido como eutrofización. Muchos de los lagos chilenos se encuentran bajo procesos activos de eutrofización.
plaguicidas, ya que adsorben fertilizantes y plaguicidas.

- Reducción significativa del oxígeno disuelto, generando condiciones anóxicas o de reducción.

En el caso de las aguas subterráneas, el paso del agua contaminada a través del perfil del suelo hace que las alcance libre de los sólidos en suspensión. Aquí, la contaminación difusa se manifiesta por un aumento de concentración de formas disueltas de nutrientes (básicamente nitrógeno) y plaguicidas (básicamente herbicidas hidrosolubles) y en la reducción del oxígeno disuelto.

En términos simples, la contaminación difusa de las aguas continentales se produce como una consecuencia —hasta ahora inevitable— de la intervención humana, al establecer sistemas agropecuarios y silvícolas. Su magnitud depende directamente de la intensidad de las acciones productivas y de la vulnerabilidad del sitio en que se realizan. Su impacto ambiental negativo será mayor, más grave y menos reversible cuanto menos se respeten las limitaciones que presentan los cuerpos naturales (capacidad de uso de los suelos, tiempos de renovación de aguas, por ejemplo), mientras más intensivo sea el uso y en tanto menos se consideren las restricciones de resguardo ambiental en las prácticas prediales.

Las prácticas silvoagropecuarias que, aplicadas sin una adecuada conciencia ambiental, más contribuyen a la contaminación difusa de las aguas, son:

- En cuanto a aporte de nutrientes:
 - La aplicación de fertilizantes a los suelos. El impacto contaminante será máximo si se trata de productos minerales solubles, en suelos de texturas arenosas y en dosis excesivas. Especialmente importantes son los fertilizantes nitrogenados (dada la movilidad de sus formas minerales), aunque los fosforados también hacen su aporte.
 - La disposición, sobre los suelos, de residuos orgánicos animales en forma líquida (purines, por ejemplo). El impacto contaminante en las aguas subterráneas será más grave en función de una mayor velocidad de infiltración.

- En cuanto a aporte de residuos de plaguicidas:
 - La aplicación de plaguicidas sintéticos. El impacto contaminante será máximo cuando se usen plaguicidas solubles directamente sobre los suelos, en dosis altas y por tiempos prolongados.

- En cuanto a remoción de partículas edáficas:
 - El pastoreo de un rebaño que exceda la capacidad de talajeo de los suelos involucra una pérdida progresiva de la capacidad interceptora de la cubierta vegetal a las gotas de lluvia. Además provoca destrucción de la estructura del suelo por el pisoteo animal.
 - El laboreo del suelo y otras acciones que desnudan su superficie, como tala de bosques o incendios forestales, en épocas de lluvias. El impacto será máximo si los suelos son vulnerables a la contaminación hídrica.
 - El riego, como potenciador de la contaminación difusa, tal como se mencionó anteriormente.
2.4. VULNERABILIDAD DE LAS AGUAS DULCES

Si bien la génesis de la contaminación difusa está en las decisiones de producción, un factor condicionante de la magnitud del daño es el escenario ambiental por donde fluyen las aguas. En otras palabras, las características y gravedad del perjuicio dependen no sólo de las acciones humanas, sino también de la facilidad con que las aguas aplicadas a los suelos (tanto por lluvia como por riego) alcancen la red de flujo hídrico de una cuenca. Esto último es lo que se conoce como vulnerabilidad de los recursos hídricos continentales. La vulnerabilidad es máxima

- mientras más abierta sea la comunicación entre la superficie de los suelos y los cuerpos de agua subterráneos,
- mientras más frágiles sean los suelos a la erosión hídrica, y/o
- mientras más fácil sea el acceso de aguas de escorrentía a cauces superficiales.

La existencia de diferentes grados de vulnerabilidad hace que el impacto de una misma acción (por ejemplo, aplicación de fertilizantes nitrogenados solubles) sea distinto –en tiempos de emergencia y magnitud– al ser efectuada en sitios diferentes. Ello obliga a diseñar medidas sitio-específicas para prevenir o remediar el proceso contaminante.

La facilidad con que los cuerpos/cursos de agua son alcanzados por aguas residuales de la actividad agrícola o silvícola se origina en numerosos factores –todos ellos interrelacionados– que favorecen, retardan o imposibilitan el proceso. Así:

En un sitio dado, el balance entre percolación y escorrentía dependerá principalmente de la geomorfología (pendientes, relieve), la velocidad de infiltración (por textura y estructura), la intensidad y duración de las lluvias, el tipo y densidad de la cobertura vegetal y las prácticas agrícolas (cuadro 1). En sitios más bien planos, el movimiento hídrico dominante será la percolación, favorecida por texturas

Cuadro 1. Factores ambientales que facilitan la contaminación difusa de las aguas (adaptado de Porta et al., 1994).

<table>
<thead>
<tr>
<th>Factor ambiental</th>
<th>Condicionantes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clima</td>
<td>Velocidad del viento. Duración de ráfagas</td>
</tr>
<tr>
<td>Geomorfología</td>
<td>Longitud y forma de laderas</td>
</tr>
<tr>
<td>Suelos</td>
<td>Propiedades mineralógicas</td>
</tr>
<tr>
<td></td>
<td>Profundidad de la napa</td>
</tr>
<tr>
<td>Hidrología</td>
<td>Cercanía a cursos de aguas</td>
</tr>
<tr>
<td>Cubierta vegetal</td>
<td>Función de pantalla protectora</td>
</tr>
<tr>
<td></td>
<td>Altura y densidad de la cubierta vegetal (determina cuán distante de la superficie del suelo golpea la gota de lluvia)</td>
</tr>
<tr>
<td>Tecnología</td>
<td>Tipo de cultivo</td>
</tr>
<tr>
<td></td>
<td>Técnicas o métodos de cultivación</td>
</tr>
<tr>
<td>Socioeconómico</td>
<td>Proporciones y aplicaciones usadas (agroquímicos)</td>
</tr>
<tr>
<td></td>
<td>Prácticas de eliminación de malezas o rastrojos de cultivos</td>
</tr>
<tr>
<td></td>
<td>Falta de percepción de la fragilidad del suelo y su progresiva degradación</td>
</tr>
<tr>
<td></td>
<td>Costo y mantenimiento de infraestructuras de conservación</td>
</tr>
</tbody>
</table>
gruesas; por el contrario, en sitios inclinados, con texturas más finas y/o suelo descubierto, lo será la escorrentía.

Si en su movimiento descendente a través del perfil del suelo, el agua de percolación encuentra capas de permeabilidad restringida, iniciará un movimiento lateral, pudiendo aflorar aguas abajo o mantenerse en la zona de raíces. Como indican Tondreau (1994) y Peña (1990), la vulnerabilidad a la contaminación difusa del agua subterránea se maximiza si es abierta y se minimiza si es confiada. La profundidad a que se encuentra el agua subterránea es otro factor condicionante de esta vulnerabilidad: mientras más superficial, más vulnerable, y viceversa.

El relieve, la pendiente, el tipo y densidad de la cubierta vegetal, son factores que condicionan la tasa de escorrentía sobre el suelo, lo que, a su vez, determina la energía de suspensión, el movimiento de sedimentos suspendidos y el tiempo para que el agua infiltré en determinada superficie (Pinochet, 2000).

La lluvia es un factor natural de la erosión hídrica que ha venido modelando la superficie sólida del planeta por millones de años, hasta alcanzar la situación de hoy. Las características de una lluvia condicionan su potencial erosivo, aunque su expresión depende de la fragilidad a la erosión de los suelos receptores y de la calidad protectora de la cubierta vegetal.

2.5. SOLUCIONES

Para minimizar e idealmente eliminar la contaminación difusa, es necesaria una estrategia diferente a la requerida para controlar la contaminación por fuentes fijas, que se basa en la formulación de normas de calidad ambiental y procedimientos de fiscalización y sanción de los puntos de descargas. La superación de la contaminación difusa apunta hacia la aplicación —a nivel individual— de prácticas de manejo sostenibles.

Si realmente se desea prevenir o remediar el problema, se debe apuntar a la gestión del productor agrícola. La solución pasa por cambios conductuales que aseguren un manejo de suelos y aguas no erosivo ni contaminante. Se requiere la adopción de códigos de buenas prácticas, con la condición de ser sitio-específicas.

La existencia de una frondosa red de comunicación entre todos los compartimentos ambientales hace que los procesos desencadenados por prácticas no sostenibles —como la erosión y la eutrofización— también se encuentren en estrecho vínculo. La superación de uno (por ejemplo, erosión) contribuye significativamente a la superación de otros (léase, sedimentación, eutrofización). Ello obliga a contar con códigos de buenas prácticas agrícolas, que entreguen información suficiente para que cada productor agropecuario o silvícola pueda prevenirlas.

El cambio conductual, a su vez, operará sólo si hay una toma de conciencia acerca de la responsabilidad asumida al trabajar con recursos que, junto con ser productivos, son también vitales para sostener la vida. Si bien otros sectores de la sociedad también son responsables del desarrollo sostenible, al estar directa o indirectamente relacionados con el sector silvoagropecuario, hay que reconocer que la aplicación de las tecnologías de producción y la elección de agroquímicos es dependiente del agricultor, el que requiere tener conocimientos suficientes y la conciencia necesaria para tomar decisiones favorables a la sostenibilidad ambiental.

En el Anexo 3 se presentan fotografías que ilustran las fuentes de contaminación difusa.
BIBLIOGRAFÍA CONSULTADA

3. DISEÑO Y ESTABLECIMIENTO DE UN BIOFILTRO
Abelardo Villavicencio Poblete

3.1. DEFINICIÓN CONCEPTUAL DE UN BIOFILTRO

Existen variadas formas de solucionar o mitigar la contaminación difusa, desde medidas de manejo en el origen, es decir implementar mejores prácticas culturales que reduzcan la producción de contaminantes, hasta la instalación de barreras físicas que bajen la velocidad del agua de escurrimiento y, por lo tanto, la erosión.

Una alternativa conducente a disminuir el ingreso de contaminantes hacia los cursos de agua son los denominados biofiltros ecológicos o “buffer”, que corresponden a una asociación vegetal, conformada por especies herbáceas, arbustivas y arbóreas, solas o en combinación. Las plantas se ubican en forma perpendicular al avance del agua de escorrentía y paralela al curso de agua donde se recibe el escurrimiento superficial de las áreas de cultivo.

Un biofiltro también puede tener otros objetivos; por ejemplo, para la protección de riberas, para defender zonas susceptibles de inundación, establecer corredores de vida silvestre, reducir la temperatura de los cursos de agua y favorecer la proliferación de peces, aumentar la diversidad vegetacional y embellecer el paisaje del área.

Como se señaló, es posible utilizar árboles, arbustos o pastos, que tienen la propiedad de filtrar contaminantes difusos generados por la actividad agrícola, tales como nutrientes (nitrógeno y fósforo), sedimentos, residuos de plaguicidas y material orgánico, entre otros, que son arrastrados por la escorrentía superficial en los campos de cultivo. En la figura 4 se muestra un diagrama de un biofiltro en el campo.

Figura 4. Disposición de especies vegetales en un biofiltro.
Fuente: www.forestry.iastate.edu/.../buffer1.gif
Los biofiltros más eficientes están conformados por tres estratas o zonas de vegetación. Una zona, compuesta por una cubierta herbácea, se ubica inmediatamente adyacente al campo de cultivo. Luego viene una zona media integrada por arbustos y, por último, una zona adyacente al curso de agua, constituida por árboles.

En cuanto a las características generales de las especies a incluir, se prefieren pastos de tallos erectos y rígidos, que opongan resistencia al avance del agua, lo que permite disminuir su velocidad de desplazamiento y facilitar la decantación de sólidos. Es recomendable utilizar gramíneas, dada su mayor afinidad por nitrógeno, lo que ayuda a retener este nutriente. La cobertura de la estrata herbácea es fundamental para lograr un alto nivel de eficiencia en la captura de sedimentos. En cuanto a arbustos y árboles, el objetivo es tener en el subsuelo una masa de raíces en activo crecimiento para capturar el excedente de nitrógeno y fósforo, de modo que sean incorporados a su biomasa y almacenados en ella.

Por otra parte, la intensa actividad radicular y las mejores condiciones de infiltración de agua en esta zona, contribuyen a que poblaciones de microorganismos habitantes del suelo se desarrollen en mejores condiciones, capturen nutrientes y utilicen cadenas carbonadas de las moléculas de los plaguicidas como fuente de energía para sus procesos biológicos. Ello ayuda también a eliminar dichos contaminantes del medio.

Cuando los biofiltros se emplazan a lo largo de un curso de agua como estero, río o lago, además cumplen funciones de estabilización de taludes, protección de riberas y control de inundaciones.

Desde el punto de vista de la protección de la vida silvestre, logran un efecto notable al favorecer el desarrollo de una gran variedad de animales, aves y especies acuáticas. La presencia de árboles cercanos al cauce provoca filtrado, regulación de caudales y, especialmente, sombreamiento. Dado que colaboran a mantener la temperatura del agua algunos grados más baja que la expuesta directamente al sol, favorecen un mayor contenido de oxígeno, lo cual es beneficioso para peces y otras especies de vida acuática, como algas.

3.2. DISEÑO DE BIOFILTROS
Los factores a considerar para el diseño de estas asociaciones vegetales se relacionan con el tipo de contaminantes que se desea controlar, la selección de especies apropiadas, la estimación del ancho del biofiltro, y las labores más adecuadas para la preparación del suelo y el establecimiento del sistema, aspectos que se detallan a continuación.

a) Determinación de los principales problemas de contaminación del predio
Es importante determinar las restricciones ambientales que enfrenta el predio, según sus sistema productivo, proceder a una priorización en función de su importancia, y así definir qué diseño se adapta mejor a las necesidades particulares de cada situación. Algunas de esas restricciones pueden ser el alto grado de erosión y arrastre de sedimentos, altos niveles de fertilizantes y plaguicidas aplicados –posibles de ser arrastrados por el agua de riego–, contaminación orgánica, proliferación de algas o excesiva turbidez del agua.

b) Selección de especies apropiadas
Ya se indicó que en la conformación de un biofiltro es posible utilizar tres estratas vegetacionales:
pastos, arbustos y árboles, cada una con características definidas y que deben dar cuenta del problema que se desea solucionar.

Qué especies utilizar para cada estrata dependerá del tipo de contaminante a controlar, de la disponibilidad y costo del material vegetal. También habrá que considerar que no sean hospederas de plagas para el cultivo principal, su rusticidad para soportar estrés salino o hídrico, su capacidad de recuperación frente al tránsito de maquinaria y los intereses propios de cada agricultor.

El cuadro 2, presenta una relación entre tipo de contaminante, sus características y las condiciones que debe tener la especie vegetal utilizada para su control.

En el marco del proyecto “Establecimiento y evaluación de biofiltros para reducir la contaminación difusa en aguas de riego”, ejecutado por INIA en las regiones del Libertador Bernardo O’Higgins y del Maule, se evaluó el comportamiento de especies tales como falaris (Phalaris aquatica), festuca (Festuca arundinacea), ballica (Lolium perenne), avellano europeo (Corylus avellana), álamo, (Populus sp.), eucalipto (Eucaliptus globulus, Eucaliptus camaldulensis), sauce mimbre (Salix viminalis), arándano (Vaccinium corymbosum), olivo (Olea europaea) y algunas especies nativas.

A continuación se entrega un detalle de su comportamiento y grado de adaptación al sistema, que sirve de guía para el proceso de selección de especies.

Avellano europeo (*Corylus avellana*)

El avellano europeo (foto 1) demostró ser una especie que se adapta muy bien a un biofilo. No presentó daños ni ataques importantes de plagas o enfermedades. Resistió periodos de escasez y exceso de agua. Alcanzó una alta emisión de brotes laterales desde el cuello de la planta, que es lo que se busca, ya que las especies que conforman la estrata arbustiva y arbórea deben ser capaces de emitir una abundante masa de raíces laterales para absorber agua y nutrientes. Además, tienen que otorgar buenas condiciones a nivel de la rizósfera a fin de que se desarrollen las poblaciones de microorganismos habitantes del suelo, las cuales participan en la degradación de residuos de plaguicidas o captura de nutrientes.

![Foto 1. Avellano europeo.](image)
Cuadro 2. Tipo de contaminante y características de las especies vegetales para su control.

<table>
<thead>
<tr>
<th>Contaminante</th>
<th>Características del contaminante</th>
<th>Características de la especie vegetal</th>
<th>Observaciones</th>
</tr>
</thead>
</table>
| Sedimentos | • Son arrastrados por la escorrentía superficial, provocada por lluvia o por métodos de riego inadecuados
| |
| | • Inadecuadas prácticas de labranza de suelo | • Especies o mezclas de especies forrajeras de tallos erectos y resistentes a tendedura | • Evitar formación de champas de pasto que generen flujos preferentes |
| | • Mal uso de la capacidad de los suelos, sobrepastoreo, deforestación | | |
| Residuos de plaguicidas | • Predomina el movimiento lateral a través del biofiltro antes que en profundidad | • Especies de raíces profundizadoras | • Complementar con normas de manejo basadas en un uso racional de plaguicidas |
| | | • Especies de crecimiento rápido | |
| | | • Especies resistentes a pesticidas | |
| | | • Complementar con normas de manejo basadas en un uso racional de plaguicidas | |
| Nitratos | • Altamente solubles | • Se recomienda usar especies gramíneas en la conformación de la estrata herbácea | • Manejo racional de las aplicaciones de nitrógeno |
| | • Rápidamente alcanzan nappas freáticas en profundidad | • Sistema radical profundizador y ramificado | • En suelos arenosos o con roca fracturada lixivia rápidamente |
| | • Pueden entrar al biofiltrro por vía superficial o subsuperficial | | |
| | • Pueden ser removidos por el biofiltrro por absorción a través de raíces o por denitrificación en ambiente anaerobio | | |
| Fosfatos | • Se adhieren a sedimentos o materia orgánica | • Especies de crecimiento rápido | • Posible saturación del biofiltrro al ocupar los sitios de adsorción del suelo |
| | | • Sistema radical ramificado | • Biofiltros maduros serían menos eficientes en captura de fosfatos, especialmente los solubles |
| | | | • Una alternativa de solución es la cosecha permanente de fitomasa para estimular la absorción |
| | | | • Manejo racional de las aplicaciones de fósforo |
Álamo (*Populus* sp.)
Se utilizó el híbrido I-64/51 (foto 2), de alta tasa de crecimiento y rusticidad. En tres años logró alturas superiores a 4 metros, lo que posiciona a esta especie como una muy buena alternativa, especialmente en zonas donde el problema de contaminación principal sean los nitratos. No se evidenciaron ataques importantes de plagas o enfermedades.

Eucaliptos (*Eucalyptus* sp.)
Se probaron diferentes especies, tales como *Eucalyptus cinerea*, *E. delicatessen*, *E. gunii*, *E. camaldulensis* y *E. globulus*. De ellas, sólo los dos últimos manifestaron un comportamiento de interés para ser incorporados en un biofiltro. En predios regados con una mezcla de agua de canal con purines de cerdo, que origina altos niveles de nitratos y una alta salinidad, *E. camaldulensis* demostró ser la especie de mejor comportamiento, resistiendo aplicaciones de purines con escasa dilución. Cuando la mezcla de purines y agua de riego presentó un menor contenido salino o con criterios de dilución de la mezcla, dio mejor resultado *E. globulus*, por su rápido crecimiento. Ambas especies destacan también por su alta capacidad extractiva de nitrógeno (N), del orden de 500 kg N/ha/año. En general las dos presentaron gran habilidad para crecer en ambientes desfavorables, logrando alturas de 4,5 m al cabo de tres años de estudio (foto 3).

Sauce mimbre (*Salix viminalis*)
Resultó ser también una especie muy rústica en su comportamiento. Resiste prolongados periodos de sequía o inundación, de manera que se perfilá como una buena alternativa, además de ser de muy fácil establecimiento y bajo costo. Su sistema radicular es amplio y extendido, por lo que se ajusta muy bien al sistema (foto 4).
Arándano (*Vaccinium corymbosum*)

De las especies consideradas en el proyecto, el arándano (foto 5) tuvo un comportamiento dependiente en alto grado de los cuidados que se le dieron, así como también de las aplicaciones correctivas de azufre para modificar el pH del suelo. De lo contrario manifiesta una clara deficiencia de hierro, lo cual afecta el crecimiento de la planta. Este aspecto permitió definir a la especie como delicada y que requiere de normas especiales de manejo; en consecuencia no se considera como una alternativa viable para usar en estas asociaciones vegetales.

Olivo (*Olea europaea*)

El manejo del caudal y tiempo de riego resultaron ser las variables que más afectaron a las especies consideradas en la conformación de las asociaciones vegetales. En general se apreciaron altos volúmenes de agua aplicados a los cultivos, durante un tiempo variable, lo que determinó la acumulación de agua en los sectores más bajos del potrero y el consiguiente efecto negativo sobre la disponibilidad de oxígeno en la zona de raíces. En ese contexto de manejo, el olivo se mostró muy sensible a los excesos de humedad, manifestando detención del crecimiento, clorosis, caída de hojas y muerte de ramillas. Por lo tanto, no es recomendable para ser considerado en un biofiltro. Las condiciones comunes de manejo del agua en la zona de estudio lo afectan notoriamente, ya sea por la falta de oxígeno a nivel radicular o por la susceptibilidad a enfermedades fungosas a nivel del cuello de la planta. Es preferible, entonces, seleccionar especies capaces de soportar este grado de estrés, como requisito fundamental para ser consideradas en la conformación de un biofiltro (foto 6).
Especies nativas
Maqui, maitén, chilca, peumo, coigüe, quillay y pimiento fueron otras especies probadas en el estudio. Al igual que en el caso de olivo, evidenciaron nula adaptación al sistema pues no toleraron períodos prolongados de humedad. Además, tuvieron una baja tolerancia a salinidad. En efecto, en el módulo de Pichidegua, en el que se aplicó purines de cerdo en mezcla con agua de riego, luego del segundo riego manifestaron claros síntomas de toxicidad por sales. La reacción se hizo evidente al fin de la primera temporada, cuando la población de plantas disminuyó a menos de un tercio de la original, obligando a su substitución por sauce mimbre. Lo anterior indica que las especies evaluadas no son recomendables para conformar un biofiltro bajo condiciones de la zona central (foto 7).

Foto 7. Maqui en condiciones de anegamiento (izquierda) y muerte de plantas por un exceso de salinidad en el agua de riegomezclada con purines de cerdo (derecha)
Pradera

La estrata herbácea se conformó con una mezcla de tres gramíneas: ballica (Lolium perenne), festuca (Festuca arundinacea) y falaris (Phalaris aquatica), en porcentajes de 25; 30 y 45%, respectivamente. Sus principales características son hábito erecto, resistencia a tenedura y alta capacidad extractiva de nitrógeno.

Dentro de la mezcla, ballica y festuca mostraron un buen comportamiento. Su resistencia al tránsito intenso de maquinaria las valida especialmente para ser usadas en predios orientados a la fruticultura, donde esta situación es de común ocurrencia. Por el contrario, falaris no se adaptó bien al sistema y desapareció de la mezcla en la primera temporada, por lo cual no se recomienda para ser parte de un biofiltro.

Ballica y festuca demostraron también un alto grado de eficiencia en la remoción de sedimentos. Los tallos erectos y rígidos de festuca tienden a reducir la velocidad de avance del agua, facilitando la sedimentación de los sólidos arrastrados por ésta. Adicionalmente, la festuca presentó elevada tolerancia al estrés salino. La ballica, por su parte, tiene alta afinidad por el amonio, principal forma en que se encuentra el nitrógeno proveniente de purines de cerdo, de manera que también se considera una característica de mucho interés para la conformación de la mezcla, en particular en predios que disponen sus purines en el campo, como parte de la fertilización de los cultivos.

El grado de cobertura que se alcance con la cubierta de pasto constituye un aspecto de importancia fundamental, porque incide fuertemente en el nivel de eficiencia en la captura de sedimentos. La mezcla de praderas probada logró mantener una cobertura superior al 90% luego de tres temporadas de estudio (foto 8).

Foto 8. Pradera de gramíneas con alto grado de cobertura de suelo.
c) Determinación del ancho mínimo del biofiltro

El ancho mínimo para un biofiltro está condicionado por el nivel de remoción que se espera para el contaminante más restrictivo, respecto de las normas vigentes, y por un costo razonable. Además, debe ajustarse a las condiciones particulares de cada predio y al interés de cada productor.

El cuadro 3 presenta criterios básicos para la definición del ancho mínimo de un biofiltro en función de los objetivos a alcanzar. Debe considerarse que los valores son referenciales y pueden variar dependiendo de las condiciones específicas del sitio, del tipo de vegetación y de la pendiente, entre otros aspectos. La figura 5 es una representación gráfica simplificada de los criterios del cuadro 3.

Cuadro 3. Algunos objetivos y consideraciones para la determinación del ancho del biofiltro.

<table>
<thead>
<tr>
<th>Objetivos</th>
<th>Consideraciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filtro de sedimentos y captura de contaminantes en sedimentos</td>
<td>• En pendientes menores a 15% la mayoría de los sedimentos son atrapados en un biofiltro de cobertura herbácea de 7 a 9 m de ancho
• Anchos mayores se necesitan si se ocupan arbustos o la carga de sedimentos es muy alta, o la pendiente es mayor a 15%</td>
</tr>
<tr>
<td>Filtro de nutrientes y pesticidas solubles en escorrentía superficial</td>
<td>• Anchos mayores a 30 m pueden ser necesarios en suelos con alta pendiente y baja velocidad de infiltración</td>
</tr>
<tr>
<td>Control de taludes o erosión de riberas</td>
<td>• En lagos o esteros pequeños, con procesos erosivos poco importantes, bastaría una pequeña estrata de arbustos
• En ríos con problemas de inundaciones o erosión activa, incorporar estrata arbórea y eventualmente prácticas especiales de ingeniería</td>
</tr>
<tr>
<td>Protección contra inundación</td>
<td>• Depende del tamaño del estero o cauce; si es pequeño se requiere una faja angosta de árboles o arbustos, de lo contrario se debe aumentar el ancho a fin de proteger una superficie mayor</td>
</tr>
<tr>
<td>Sombra, protección y alimento para especies acuáticas</td>
<td>• La cobertura vegetal disminuye la temperatura del agua antes de llegar al curso principal, aumentando el nivel de oxígeno y beneficiando a los organismos acuáticos
• También la sombra y baja temperatura ayudan al control de algas en el cauce
Para estos objetivos se necesitarían 30 m, aproximadamente</td>
</tr>
<tr>
<td>Hábitat silvestre</td>
<td>• Es altamente dependiente del tipo de especie
• Estándares de NRCS (Nebraska, Estados Unidos) indica 14 m mínimo para favorecer el desarrollo de aves sobre cubierta herbácea. A mayor tamaño de las especies, mayor es el ancho requerido, particularmente en aves que viven al interior de bosques</td>
</tr>
<tr>
<td>Productos comercializables</td>
<td>• El ancho es altamente dependiente del cultivo elegido y de su manejo; para especies arbóreas se prefiere alta densidad</td>
</tr>
<tr>
<td>Diversidad visual</td>
<td>• El ancho dependerá de los gustos y preferencias del agricultor</td>
</tr>
</tbody>
</table>

-26-
La capacidad de los biofiltros para atrapar sólidos se correlaciona positivamente con su ancho y negativamente con la pendiente.

Dado que el fósforo (P) se encuentra por lo general adherido a sedimentos o materia orgánica, el ancho seleccionado para remover o capturar sedimentos en escorrentía superficial también influirá en la remoción de este nutriente. En términos generales, la retención de P aumenta con el ancho del biofiltro, siendo 5 a 10 m un rango de ancho aceptable para removerlo.

En aguas superficiales los biofiltros pueden ser eficientes en la remoción del nitrógeno (N) total, no así en la remoción de nitratos. Vougth et al. (1994) reportaron una reducción de N total de 20% después de 8 m de ancho y 50% en biofiltros de 16 m de ancho. Se plantea que una franja de 10 a 20 m en la mayoría de los casos retendrá la mayor parte del N y P presentes en la escorrentía superficial.

A diferencia de las aguas superficiales, en aguas subsuperficiales diversos estudios demuestran altas tasas de remoción de nitratos. Se reporta que anchos de biofiltros de 30 m logran disminuir en un 94% su carga (de 8 mg/l a 0,5 mg/l).

Los resultados del proyecto desarrollado por INIA indican que biofiltros de 8 m de cobertura herbácea y 7 m entre arbustos y árboles, son capaces de retener hasta un 80% de sólidos sedimentables y 40 a 44% de residuos de plaguicidas como Metaloclоро y Clorpirifos, respec-
tivamente. Esta asociación vegetal tiene también un alto grado de eficiencia en la remoción de nitratos en agua subsuperficial, alcanzando eficiencias del orden de 70%, por lo que para condiciones de la zona central el ancho indicado se muestra capaz de retener los principales contaminantes difusos transportados por el agua de riego.

3.3. LABORES DE ESTABLECIMIENTO DE UN BIOFILTRO

Una vez que el tipo de vegetación y el ancho del biofiltro se han definido, se procede a su establecimiento. Para ello se realiza una preparación de suelo acorde a las especies seleccionadas y con el propósito adicional de mejorar la infiltración de agua en el perfil de suelo. Se debe tener en consideración cómo se ubican las especies: no hay que mezclar aquellas que sean demasiado competitivas entre sí, y se requiere definir cuidadosamente las distancias de plantación, especialmente en árboles y arbustos. También se recomienda considerar necesidades de replante para asegurar un buen establecimiento y cobertura del biofiltro.

Preparación de suelo

Estas estructuras son de tipo permanente, por tanto cualquier detalle o falla en esta etapa acompañará al biofiltro en toda su vida útil. Correcciones posteriores implicarán mayores costos.

Uno de los principales aspectos a considerar es la nivelación del suelo donde se establecerá el biofiltro, o al menos realizar labores de emparejamiento de la zona, para que el agua de escorrentía superficial atravesie el biofiltro en forma de lámina y no se produzcan flujos preferentes o acumulaciones de agua en sectores bajos. Pendientes de 1 a 2% se consideran adecuadas. Según los resultados encontrados durante el desarrollo del proyecto, biofiltros con pendientes en dicho rango mostraron un alto grado de eficiencia en la remoción de contaminantes, especialmente sedimentos. Sin embargo, reportes de investigaciones indican que con pendientes de hasta 15%, estas asociaciones vegetales tienen algún grado de eficiencia en la retención de contaminantes (Dillaha, et al., 1998).

Antes de poner el biofiltro es recomendable realizar trabajos de subsolado en verano y/o aradura con arado cincel (foto 10), para romper capas impermeables y facilitar la infiltración de agua en el perfil de suelo. No se debe olvidar que una de las características de un biofiltro es su alto poder de infiltración.
de agua, por lo que se debe privilegiar labores que ayuden en este sentido. En consecuencia, la preparación de suelo y el tipo de implemento de labranza son aspectos de particular cuidado al momento de establecer el sistema. Una consideración relevante es el grado de humedad del suelo al iniciar su preparación, especialmente en aquellos de texturas finas. Se recomienda iniciar las labores con suelo en estado friable, pues humedades mayores originarán terrones que no son posibles de reducir mediante rastrajes. Esta situación podría dificultar la formación de una cama de semilla mullida en el caso del establecimiento de la pradera, dificultando su emergencia y cobertura de suelo, aspecto de alta importancia para la función de remoción de sedimentos que cumple la estrata herbácea (foto 11).

Fertilización

Se recomienda realizar una aplicación de fertilizantes para apoyar el establecimiento de las especies. En el caso de la estrata herbácea, se sugiere aplicar 90 unidades de N/ha y 60 unidades de fósforo como P$_2$O$_5$/ha, a la siembra. Posteriormente, los requerimientos de esta estrata deberán ser cubiertos con el arrastre de nutrientes a través del agua de escorrentía superficial. En el estudio de INIA, el manejo de la fertilización se efectuó en estos términos y la pradera no presentó sintomatología de deficiencia de N ni P. Por el contrario, se determinó altos niveles de extracción de nitrógeno, cercanos a 300 kg/ha/año.

Para los arbustos y árboles se aplicaron diferentes dosis de fertilizantes, variables según la especie, desde la plantación (a salidas de invierno) y hasta febrero. El objetivo en la primera etapa es lograr un rápido establecimiento de las plantas, de tal manera que cubran lo antes posible el espacio asignado. Al entrar al primer otoño después de la plantación, se suspenden las aplicaciones de fertilizantes o promotores de enraizamiento y se deja operando sólo el sistema, de modo que los nutrientes provengan de los contenidos en el agua que escurre superficialmente en el predio. En el Anexo 2 se presentan las fichas técnicas de los ocho sitios donde se establecieron los biofiltros, así como también las labores de mantención aplicadas.
Riego
Las asociaciones vegetales deben estar conformadas por especies capaces de mantenerse y crecer con el agua de escorrentía superficial que se produce cuando se riega el cultivo principal. En casos donde se haya suspendido los riegos, por término del cultivo u otras razones, es posible dar un riego mensual de mantenimiento, sin dañar significativamente el sistema. Desde este punto de vista, especies como álamo, eucalipto, sauce mimbre, avellano europeo y la asociación de ballica con festuca, mostraron un buen comportamiento.

Es importante, al momento de seleccionar las especies de un biofiltro, determinar algún grado de relación entre la frecuencia de riego del o los cultivos principales y el tipo de especie a considerar, de manera que exista una relación cercana que no dificulte el establecimiento y desarrollo posterior del sistema (foto 12).

Foto 12. Avellano europeo y pradera y recibiendo agua de escorrentía superficial producto del riego del cultivo principal.

Fechas de siembra o plantación
La estrata herbácea puede establecerse en dos épocas del año: otoño y primavera. Sin embargo, se recomienda como óptima la siembra de otoño, donde se produce menor competencia con malezas y se logra una mejor cobertura y establecimiento de las especies. Lo anterior se fundamenta en una menor pérdida de humedad en la cama de semilla, lo que permite conservar una humedad adecuada para la germinación. Por otra parte, las especies forrajeras sugeridas presentan bajas temperaturas de germinación, más acordes con las existentes en otoño–invierno.

En cuanto a las especies forestales, la mejor época para su establecimiento va de mediados a salida de invierno, para sacar partido de la humedad almacenada en el suelo producto de las precipitaciones invernales, y aprovechar las mayores temperaturas que comienzan a registrarse.

Dosis de semilla y densidad de plantación
Para el caso de la estrata herbácea se recomienda una mezcla de ballica y festuca, en dosis de 70 kg/ha. En el caso de las especies arbustivas y arbóreas, se aconseja un marco de plantación de 3 x 2 m en álamo y eucalipto; 2 x 1 m en avellano europeo y 1 x 1 m en sauce mimbre.
La siembra de la estrata herbácea puede realizarse al voleo o con máquina sembradora (foto 13), lo que mejora notablemente el grado de homogeneidad de la siembra y facilita una distribución más pareja de la semilla, ayudando a lograr un amplio y homogéneo grado de cobertura de esta estrata (foto 14), aspecto fundamental para la función de filtro de contaminantes que se busca.

Foto 13. Siembra manual de la pradera.

Foto 14. Emergencia de la estrata herbácea.
Mantención de la pradera

Este es un aspecto de manejo de alta importancia para el éxito del biofiltro. Un corte oportuno de la estrata herbácea tiene como resultado una alta cobertura de la superficie y la mejor condición para la retención de sólidos. Según la experiencia recogida en el estudio de INIA, para mantener la pradera funcionando activamente en los biofiltros bajo las condiciones de la zona central del país, basta con dos cortes mensuales entre octubre y febrero, y uno mensual durante el resto del año.

El corte se debe realizar con una segadora o “rana”. El pasto obtenido se aplica como mulch para el control de malezas en la hilera o entrehilera de árboles y arbustos, especialmente durante el primer año de establecimiento. Así disminuye la competencia con las especies nobles a las cuales debe otorgarse todas las posibilidades de establecerse rápidamente.

La altura de corte es relevante para lograr el efecto de filtro de sólidos que se persigue. Los resultados del proyecto indican que cortes a 15 cm de altura son adecuados para lograr buenos índices en la remoción de sólidos. Alturas de corte menores a 5 cm, especialmente en ballica perenne y festuca, no son recomendables porque se afecta el nivel de reservas basales de la planta, además de destruir puntos de crecimiento y yemas axilares, responsables de mantener un rebrote permanente. Alturas de corte mayores dificultan el accionar del biofiltro y tienden a producir “enchampamiento”, sobre todo de festuca, con lo que disminuye progresivamente la cobertura de suelo y la eficiencia del sistema. La foto 15 muestra una pradera con altura de corte de 15 cm, con alto grado de cobertura y sin “champas” de pasto, características que facilitan el flujo laminar del agua a través del biofiltro (el agua ingresa desde el margen izquierdo de la foto).

![Foto 15. Mantención de la estrata herbácea.](image)
4. BIOFILTROS EVALUADOS PARA CONTROL DE CONTAMINACIÓN DIFUSA EN AGUAS DE RIEGO

Francisco Tapia Flores
Abelardo Villavicencio Poblete

Con la finalidad de evaluar la eficiencia de biofiltros en la reducción de contaminantes difusos del agua de riego, en las regiones de O’Higgins y del Maule, se seleccionaron ocho predios, que conformaron igual número de módulos de estudio.

Para diseñar cada biofiltro fue necesario primeramente definir los principales problemas de contaminación de cada predio (cuadro 4).

Cuadro 4. Principales problemas de contaminación, según módulo.

<table>
<thead>
<tr>
<th>Módulo</th>
<th>Región</th>
<th>Tipo de contaminación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pichidegua</td>
<td>O’Higgins</td>
<td>Contaminación por nitratos y coliformes fecales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Residuos de plaguicidas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arrastre de sedimentos</td>
</tr>
<tr>
<td>Chimbarongo</td>
<td>O’Higgins</td>
<td>Arrastre de sedimentos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contaminación por nitratos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Residuos de plaguicidas</td>
</tr>
<tr>
<td>Requínoa</td>
<td>O’Higgins</td>
<td>Arrastre de sedimentos</td>
</tr>
<tr>
<td>San Fernando</td>
<td>O’Higgins</td>
<td>Arrastre de sedimentos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Residuos de plaguicidas</td>
</tr>
<tr>
<td>Teno</td>
<td>Maule</td>
<td>Arrastre de sedimentos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Residuos de plaguicidas</td>
</tr>
<tr>
<td>Molina</td>
<td>Maule</td>
<td>Arrastre de sedimentos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contaminación por nitratos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coliformes fecales</td>
</tr>
<tr>
<td>Curicó</td>
<td>Maule</td>
<td>Contaminación por nitratos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arrastre de sedimentos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Residuos de plaguicidas</td>
</tr>
<tr>
<td>Sagrada Familia</td>
<td>Maule</td>
<td>Arrastre de sedimentos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Residuos de plaguicidas</td>
</tr>
</tbody>
</table>

Para determinar el comportamiento de los biofiltros respecto de su efecto en la remoción de los contaminantes difusos, se implementaron tres tratamientos en cada módulo.

Un biofiltro, denominado BF₁, estuvo compuesto por dos estratas. Una franja herbácea de 8 metros de ancho se conformó con una mezcla de falaris (Phalaris aquatica), festuca (Festuca arundinacea) y ballica (Lolium perenne), cuyas principales características son: hábito erecto, resistencia a tendedura y alta capacidad extractiva de nitrógeno. La otra estrata, contigua a la anterior, con especies arbustivas y arbóreas, fluctuó entre 5 y 8 m de ancho.

El segundo tratamiento se denominó biofiltro 2 (BF₂). Estuvo compuesto sólo por una estrata herbá-
Uso de Biofiltros para mejorar la calidad del agua de riego

ce, igual a la descrita anteriormente y que se replicó en todos los módulos. Además, se consideró un “testigo”, que correspondió a la situación normal de cultivo del productor, sin biofiltro.

Los criterios considerados para la selección de especies arbustivas y arbóreas que conformarían el BF1, en cada módulo, fueron:
• El sistema productivo predominante del predio.
• El principal contaminante que se deseaba remover.
• La rapidez de crecimiento y rusticidad de las especies vegetales, y que no constituyeran reservorio de plagas ni enfermedades para los cultivos del predio.
• Las preferencias del productor.

Las asociaciones vegetales se instalaron al final de cada potrero de cultivo, en forma perpendicular al avance del agua de riego, de manera que entraran en contacto con la escorrentía superficial producida por los eventos de riego o precipitaciones invernales.

En el cuadro 5, se muestra la composición vegetal de cada uno de los módulos evaluados.

Cuadro 5. Composición vegetal de los módulos.

<table>
<thead>
<tr>
<th>Módulo</th>
<th>Biofiltro 1 (BF1)</th>
<th>Biofiltro 2 (BF2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pichidegua</td>
<td>Pradera, sauce mimbre, eucalipto, álamo</td>
<td>Pradera</td>
</tr>
<tr>
<td>Chimbarongo</td>
<td>Pradera, arándano</td>
<td>Pradera</td>
</tr>
<tr>
<td>Requínoa</td>
<td>Pradera, arándano, avellano europeo</td>
<td>Pradera</td>
</tr>
<tr>
<td>San Fernando</td>
<td>Pradera, arándano, olivos</td>
<td>Pradera</td>
</tr>
<tr>
<td>Teno</td>
<td>Pradera, arándano</td>
<td>Pradera</td>
</tr>
<tr>
<td>Molina</td>
<td>Pradera, eucalipto en alta densidad</td>
<td>Pradera</td>
</tr>
<tr>
<td>Curicó</td>
<td>Pradera, sauce mimbre, eucalipto, álamo</td>
<td>Pradera</td>
</tr>
<tr>
<td>Sagrada Familia</td>
<td>Pradera, avellano europeo</td>
<td>Pradera</td>
</tr>
</tbody>
</table>

En el Anexo 3 se presentan fotografías que ilustran la composición vegetal de los distintos módulos.

Determinación del ancho de la estrata herbácea

Para determinar el ancho aproximado de la estrata herbácea, se utilizó el modelo VSF Mod, que es determinístico y se compone de 6 subrutinas. Requiere de una serie de parámetros, como datos de pluviometría y características de suelo (pendiente, fracción de arena, limo y arcilla, entre otros). Un inconveniente del modelo es la gran cantidad de parámetros que necesita para funcionar, por lo que algunos de ellos fueron medidos en laboratorio y otros determinados a partir de valores promedios contenidos en tablas y proporcionados por el modelo, según las características de suelo.

Una vez ingresada la información básica requerida por el modelo, dio como resultado el ancho de la estrata herbácea, que fue de 6 a 10 metros, para las condiciones de la zona central de Chile. Con estos antecedentes se optó por trabajar con un ancho promedio de 8 m para el BF2, y entre 6 y 8 para el BF1.
Puntos de muestreo para evaluación

Dentro de cada módulo, se definieron 9 puntos representativos para evaluar el efecto de los biofiltros en la remoción de contaminantes difusos del agua, los que se indican en la figura 6. Para invierno sólo se eliminó el punto 1, por carecer de sentido práctico.

CLAVE DEL DIAGRAMA DE MUESTREO

1. Punto de muestreo del agua de riego que entra al sistema a través del canal de regadío respectivo, considera el ingreso del agua a los tres tratamientos. Este punto es la base para determinar los cambios en los niveles de contaminantes como resultado de la aplicación de los tratamientos.

2. Punto de muestreo después que el agua superficial ha pasado por los cultivos o sistema productivo, pero antes de ingresar al Bio-filtro con la finalidad de conocer la agregación de contaminantes al sistema.

3. Puntos de muestreo después que el agua superficial pasa por el Biofiltro, con la finalidad de determinar el efecto del tratamiento sobre el nivel de contaminante.

4. Punto de muestreo del agua superficial, en el testigo, al final del tratamiento, antes del ingreso a la acequia de desagüe.

5. Puntos de muestreo para los aguas subsuperficiales, antes de ingresar a las acequias de desagüe, luego de pasar por los tres tratamientos indicados. La muestras se tomarán, según sea el caso, entre 0,50 a 1,00 m de profundidad.

Figura 6. Diagrama de puntos de muestreo.
SEGUNDA PARTE
RESULTADOS Y RECOMENDACIONES
5. EVALUACIÓN ECONÓMICA DE LOS BIOFILTROS
 Abelardo Villavicencio Poblete
 Francisco Tapia Flores

En este capítulo se consideran los costos de establecimiento, mantención y manejo de las especies establecidas en cada módulo, así como el costo alternativo del suelo que ocupan los biofiltros. Del mismo modo, se discute la conveniencia de incorporar los ingresos por concepto de cosechas de las especies consideradas en estas estructuras vegetales.

Costo de establecimiento, mantención y manejo

El costo de establecimiento, mantención y manejo de los sistemas es un factor decisivo al momento de adoptarlos como herramienta tecnológica. En los cuadros siguientes se indican los costos involucrados para el primer año de funcionamiento y su mantención posterior, considerando un horizonte de una década. En el Anexo 2 se presentan las fichas técnicas y sus costos asociados.

En el cuadro 6 es posible apreciar que el costo de establecimiento y mantención anual del BF$_1$ fluctuó entre $42 y $267/m2, con un promedio de $142/m2. El menor valor incluye especies como álamo, eucalipto, sauce mimbre y una estrata herbácea de falaris, festuca y ballica. El mayor costo corresponde a una estrata arbustiva constituida por arándano en alta densidad y la estrata de pasto.

<table>
<thead>
<tr>
<th>Módulo</th>
<th>Costo establecimiento ($)</th>
<th>Costo anual de establecimiento (10 años de vida útil)</th>
<th>Costo anual mantención y manejo ($)</th>
<th>Superficie (m2)</th>
<th>Costo anual promedio ($/m$^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requínoa</td>
<td>368.520</td>
<td>36.852</td>
<td>96.890</td>
<td>1.080</td>
<td>124</td>
</tr>
<tr>
<td>Pichidegua</td>
<td>73.761</td>
<td>7.376</td>
<td>87.924</td>
<td>760</td>
<td>125</td>
</tr>
<tr>
<td>Chimbarongo</td>
<td>886.623</td>
<td>88.662</td>
<td>313.661</td>
<td>2400</td>
<td>168</td>
</tr>
<tr>
<td>San Fernando</td>
<td>494.020</td>
<td>49.402</td>
<td>98.532</td>
<td>1200</td>
<td>123</td>
</tr>
<tr>
<td>Teno</td>
<td>669.589</td>
<td>66.959</td>
<td>221.049</td>
<td>1.080</td>
<td>267</td>
</tr>
<tr>
<td>Molina</td>
<td>298.104</td>
<td>29.810</td>
<td>86.247</td>
<td>800</td>
<td>145</td>
</tr>
<tr>
<td>Sagrada Familia</td>
<td>279.578</td>
<td>27.958</td>
<td>139.440</td>
<td>1.200</td>
<td>139</td>
</tr>
<tr>
<td>Curicó</td>
<td>76.722</td>
<td>7.672</td>
<td>45.347</td>
<td>1.275</td>
<td>42</td>
</tr>
<tr>
<td>Promedio</td>
<td>393.365</td>
<td>39.336</td>
<td>136.136</td>
<td>1.224</td>
<td>142</td>
</tr>
</tbody>
</table>

El cuadro 7 indica los costos asociados al BF$_2$, conformado por una estrata herbácea basada en falaris, festuca y ballica. Se estimó un costo anual que fluctuó entre $84 y $133/m2, con un promedio de $109/m$^2.
Cuadro 7. Costo de establecimiento y mantención de biofiltros basados en praderas (BF₂).

<table>
<thead>
<tr>
<th>Módulo</th>
<th>Costo establecimiento ($)</th>
<th>Costo anual de establecimiento (10 años de vida útil)</th>
<th>Costo anual de mantención ($)</th>
<th>Superficie (m<sup>2</sup>)</th>
<th>Costo anual ($/m<sup>2</sup>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requínoa</td>
<td>16.365</td>
<td>1.637</td>
<td>31.861</td>
<td>288</td>
<td>116</td>
</tr>
<tr>
<td>Pichidegua</td>
<td>12.901</td>
<td>1.290</td>
<td>39.187</td>
<td>304</td>
<td>133</td>
</tr>
<tr>
<td>Chimbarongo</td>
<td>19.998</td>
<td>2.000</td>
<td>48.222</td>
<td>600</td>
<td>84</td>
</tr>
<tr>
<td>San Fernando</td>
<td>34.429</td>
<td>3.443</td>
<td>48.222</td>
<td>480</td>
<td>108</td>
</tr>
<tr>
<td>Teno</td>
<td>38.564</td>
<td>3.856</td>
<td>44.829</td>
<td>400</td>
<td>122</td>
</tr>
<tr>
<td>Molina</td>
<td>19.941</td>
<td>1.994</td>
<td>32.150</td>
<td>400</td>
<td>85</td>
</tr>
<tr>
<td>Sagrada Familia</td>
<td>33.145</td>
<td>3.315</td>
<td>59.029</td>
<td>480</td>
<td>130</td>
</tr>
<tr>
<td>Curicó</td>
<td>32.457</td>
<td>3.246</td>
<td>61.588</td>
<td>680</td>
<td>95</td>
</tr>
<tr>
<td>Promedio</td>
<td>25.975</td>
<td>2.598</td>
<td>45.636</td>
<td>454</td>
<td>109</td>
</tr>
</tbody>
</table>

Las diferencias observadas para el costo anual/m² se explican por el manejo específico dado en cada módulo, en términos de preparación de suelos, riegos, cortes de pasto y control de malezas (fichas técnicas, en Anexo 2).

Costo alternativo del suelo

Para construir un biofiltro, en la mayoría de los casos el productor debe dejar de cultivar la superficie asignada a esta estructura vegetal. Por tanto, deja de percibir utilidades, lo que representa un costo alternativo. En el cuadro 8 se presenta una estimación del costo alternativo para los 8 módulos en estudio, considerando la especie cultivada, la superficie involucrada y el margen bruto logrado.

Cuadro 8. Costo alternativo del suelo.

<table>
<thead>
<tr>
<th>Módulo</th>
<th>Especie productiva</th>
<th>Superficie (m<sup>2</sup>)</th>
<th>Superficie (m<sup>2</sup>)</th>
<th>Margen bruto/ha ($)</th>
<th>Costo alternativo/m<sup>2</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Requínoa</td>
<td>Uva tintorera</td>
<td>1.080</td>
<td>288</td>
<td>500.000</td>
<td>50</td>
</tr>
<tr>
<td>Pichidegua</td>
<td>Maíz grano</td>
<td>760</td>
<td>304</td>
<td>250.000</td>
<td>25</td>
</tr>
<tr>
<td>Chimbarongo</td>
<td>Maíz choclero</td>
<td>2.400</td>
<td>600</td>
<td>1.200.000</td>
<td>120</td>
</tr>
<tr>
<td>San Fernando</td>
<td>Maíz semillero</td>
<td>1.200</td>
<td>480</td>
<td>700.000</td>
<td>70</td>
</tr>
<tr>
<td>Teno</td>
<td>-</td>
<td>1.080</td>
<td>400</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Molina</td>
<td>Uva vinífera</td>
<td>800</td>
<td>400</td>
<td>500.000</td>
<td>50</td>
</tr>
<tr>
<td>Sagrada Familia</td>
<td>Maíz semillero</td>
<td>1.200</td>
<td>480</td>
<td>700.000</td>
<td>70</td>
</tr>
<tr>
<td>Curicó</td>
<td>Maíz grano</td>
<td>1.275</td>
<td>680</td>
<td>250.000</td>
<td>25</td>
</tr>
<tr>
<td>Promedio</td>
<td></td>
<td>1.224</td>
<td>454</td>
<td></td>
<td>59</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia según datos de productores.

El costo alternativo del suelo fluctuó entre $25 y $120, con un promedio de $59/m². El mayor valor se registró en el módulo de Chimbarongo, con el cultivo de maíz choclero. El módulo de Teno no registra este costo, ya que el sector destinado a biofiltro es un camino interior del predio, no productivo directamente.
Uso de Biofiltros para mejorar la calidad del agua de riego

Una síntesis de toda la estructura de costo, expresada por m² y para la superficie total dedicada a biofiltros en cada módulo, para BF₁ y BF₂, se presenta en los cuadros 9 y 10.

Cuadro 9. Costo de BF₁, por m² y por superficie total de biofiltro.

<table>
<thead>
<tr>
<th>Módulo</th>
<th>Superficie BF₁ (m²)</th>
<th>Costo establecimiento y mantención anual ($/m²)</th>
<th>Costo alternativo ($/m²)</th>
<th>Costo total / m² de biofiltro</th>
<th>Costo/sup. total dedicada a biofiltro ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requínoa</td>
<td>1.080</td>
<td>124</td>
<td>50</td>
<td>174</td>
<td>187.920</td>
</tr>
<tr>
<td>Pichidegua</td>
<td>760</td>
<td>125</td>
<td>25</td>
<td>150</td>
<td>114.000</td>
</tr>
<tr>
<td>Chimbarongo</td>
<td>2.400</td>
<td>168</td>
<td>120</td>
<td>288</td>
<td>691.200</td>
</tr>
<tr>
<td>San Fernando</td>
<td>1.200</td>
<td>123</td>
<td>70</td>
<td>193</td>
<td>231.600</td>
</tr>
<tr>
<td>Teno</td>
<td>1.080</td>
<td>267</td>
<td>-</td>
<td>267</td>
<td>288.360</td>
</tr>
<tr>
<td>Molina</td>
<td>800</td>
<td>145</td>
<td>50</td>
<td>195</td>
<td>156.000</td>
</tr>
<tr>
<td>Sagrada Familia</td>
<td>1.200</td>
<td>139</td>
<td>70</td>
<td>209</td>
<td>250.800</td>
</tr>
<tr>
<td>Curicó</td>
<td>1.275</td>
<td>42</td>
<td>25</td>
<td>67</td>
<td>85.425</td>
</tr>
<tr>
<td>Promedio</td>
<td>1.224</td>
<td>142</td>
<td></td>
<td>193</td>
<td></td>
</tr>
</tbody>
</table>

El BF₂ resulta un 20,6% más económico que el BF₁, considerando el costo por m². Se puede apreciar que el costo de BF₁ en promedio alcanza a $193/m²/año, fluctuando entre $67/m²/año en Curicó y $288/m²/año en Chimbarongo. La diferencia se explica por el uso de especies de mayor valor, como arándano, en este último predio. Por su parte el BF₂, conformado sólo por una estrata herbácea, tiene un costo anual promedio de $160/m², con valores extremos de $120 en Curicó y $204 en Chimbarongo. La diferencia se explica por el costo alternativo del suelo ocupado por el biofiltro.

Cuadro 10. Costo de BF₂, por m² y por superficie total de biofiltro.

<table>
<thead>
<tr>
<th>Módulo</th>
<th>Superficie BF₂ (m²)</th>
<th>Costo establecimiento y mantención anual ($/m²)</th>
<th>Costo alternativo ($/m²)</th>
<th>Costo total/m² de biofiltro</th>
<th>Costo/sup. total dedicada a biofiltro ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requínoa</td>
<td>288</td>
<td>116</td>
<td>50</td>
<td>166</td>
<td>47.808</td>
</tr>
<tr>
<td>Pichidegua</td>
<td>304</td>
<td>133</td>
<td>25</td>
<td>158</td>
<td>48.032</td>
</tr>
<tr>
<td>Chimbarongo</td>
<td>600</td>
<td>84</td>
<td>120</td>
<td>204</td>
<td>122.400</td>
</tr>
<tr>
<td>San Fernando</td>
<td>480</td>
<td>108</td>
<td>70</td>
<td>178</td>
<td>85.440</td>
</tr>
<tr>
<td>Teno</td>
<td>400</td>
<td>122</td>
<td>-</td>
<td>122</td>
<td>48.800</td>
</tr>
<tr>
<td>Molina</td>
<td>400</td>
<td>85</td>
<td>50</td>
<td>135</td>
<td>54.000</td>
</tr>
<tr>
<td>Sagrada Familia</td>
<td>480</td>
<td>130</td>
<td>70</td>
<td>200</td>
<td>96.000</td>
</tr>
<tr>
<td>Curicó</td>
<td>680</td>
<td>95</td>
<td>25</td>
<td>120</td>
<td>81.600</td>
</tr>
<tr>
<td>Promedio</td>
<td>454</td>
<td>109</td>
<td></td>
<td>160</td>
<td></td>
</tr>
</tbody>
</table>

-39-
Ingresos del biofiltro

El análisis económico no considera los ingresos posibles de obtener por la producción de las especies incluidas en cada biofiltro, debido a que su objetivo es conformar una asociación vegetal para reducir los contaminantes del agua y no “producir”. Los verdaderos beneficios de los biofiltros se relacionan más bien con las mejoras ambientales. Lo indicado es coherente con las experiencias obtenidas en Estados Unidos, donde la mayor parte de los biofiltros no tiene un carácter productivo, sino que se orientan a la reducción de los contaminantes difusos del agua, al mejoramiento del paisaje, a la formación de corredores de vida silvestre y al aporte de condiciones para incrementar la biodiversidad vegetal y animal.

En la actualidad existen metodologías para determinar los beneficios ambientales de una práctica como la descrita. Sin embargo, un análisis de esta naturaleza excede los objetivos del estudio y del presente Boletín Técnico.
6. EFICIENCIA EN LA REMOCIÓN DE RESIDUOS DE PLAGUICIDAS
Francisco Tapia Flores
Jorge Jerez Briones
María Stella Moyano Arancibia

En las páginas siguientes se aborda la temática de los residuos de plaguicidas: insecticidas, fungicidas y herbicidas que fueron utilizados por los productores en los distintos módulos evaluados en el manejo de sus cultivos o huertos frutales.

En primer término, se presenta una descripción general de los efectos de los residuos de plaguicidas sobre el ambiente, la salud humana y animal, así como los factores que determinan su movilidad y contaminación de acuíferos. Posteriormente, se hace un análisis y discusión respecto de la movilidad de dichos residuos en el agua de riego y la eficiencia de los biofiltros en la reducción de su concentración en el agua superficial.

6.1. EFECTO DE LOS RESIDUOS DE PLAGUICIDAS SOBRE EL AMBIENTE
El aumento de la población mundial ha llevado al desarrollo de la agricultura a una escala industrial con la finalidad de producir el alimento necesario. El uso intensivo de plaguicidas para controlar las plagas y enfermedades que reducen la cosecha o disminuyen su calidad, ha contribuido a aumentar los rendimientos y bajar los costos de producción. No obstante, desde comienzos de la década del 70 comenzó a hacerse notorio que estos productos ocasionaban efectos adversos sobre el medio ambiente. Estudios desarrollados en el extranjero han determinado la presencia de plaguicidas en el agua superficial y subsuperficial, afectando su calidad y los ecosistemas.

Las evaluaciones demostraron que los plaguicidas podían llegar al agua aun cuando hubieran sido empleados correctamente. Ello condujo a los países a exigir mayores estudios para aprobar su utilización, y a mejorar las prácticas de aplicación, además de desarrollar sistemas de mitigación con el fin de evitar que sus residuos lleguen a cursos de agua superficiales. Usualmente la cantidad de plaguicida que llega a las aguas superficiales es baja, entre un 1 y 2% de lo aplicado. Pero la flora y la fauna pueden ser afectadas a bajas concentraciones, por lo cual esos volúmenes suelen ser más que suficientes para dañar los ecosistemas.

El manejo moderno de los plaguicidas se orienta a reducir la probabilidad de causar efectos adversos sobre la salud de las personas y el medio ambiente. En la actualidad en Chile se distribuyen más de 668 productos comerciales, los que contienen 386 principios activos (SAG, 2004).

Los factores que afectan la cantidad de plaguicidas que llega al agua incluyen las condiciones ambientales (clima, suelo), manejo agronómico (métodos de aplicación, dosis, riego) y las características fisicoquímicas de los agroquímicos (solubilidad en agua, vida media, interacción con el suelo). A continuación se describe, en forma simplificada, cómo los distintos factores influyen sobre el movimiento de los plaguicidas en el medio ambiente.
Condiciones ambientales

Las condiciones ambientales que más influyen en el movimiento de los plaguicidas son el clima (lluvia, temperatura, humedad) y el suelo.

Los microorganismos del suelo juegan un rol muy importante en la degradación de los plaguicidas, antes de que alcancen las aguas sub superficiales. Condiciones que facilitan su desarrollo activo, como son temperaturas moderadas, entre 20° y 30°C, contribuyen a una degradación rápida. Inversamente, luego de la aplicación de plaguicidas la ocurrencia de lluvias en periodos próximos aumenta la probabilidad de que alcancen los cursos de agua.

El suelo juega un rol preponderante. Además de la actividad microbiológica, las partículas más finas del suelo, como las arcillas y principalmente la materia orgánica, interactúan con los plaguicidas y reducen su movilidad. Suelos con baja materia orgánica, menor a 1%, y texturas gruesas, como los arenosos, presentan una escasa capacidad para retener los plaguicidas y aumentan la vulnerabilidad a la contaminación de las aguas. Suelos con altos contenidos de materia orgánica, como los trumaos, que pueden tener entre 10 y 20% de materia orgánica, poseen una alta capacidad de retención de plaguicidas y reducen el riesgo de contaminación del agua.

Manejo agronómico

El manejo agronómico, que considera la aplicación y la formulación de los productos, y el manejo del riego, incide en la biodisponibilidad de los residuos. A mayor uso de plaguicidas, las probabilidades de contaminar el agua superficial o sub terránea aumentan, por lo cual se debe incorporar conceptos como el manejo integrado de plagas y evitar el uso de aplicaciones por calendario.

La utilización de plaguicidas aplicados al suelo aumenta la posibilidad de que lleguen a las fuentes de agua, debido a que la cantidad de producto que potencialmente se puede movilizar es mayor. Aque llos aplicados al follaje son afectados por factores ambientales, como la luz solar, que los degradan, y la cantidad de plaguicidas que llega al suelo es una fracción menor de la distribuida inicialmente.

El riego puede transportar los plaguicidas a las aguas, especialmente en los sistemas superficiales, como el riego por surco, debido a que se utilizan altos volúmenes del recurso hídrico. Además, un aspecto poco evaluado es que el mal manejo del riego tiende a producir erosión, movilizando hasta los cursos de agua los plaguicidas que se encuentran adheridos a la materia orgánica y las arcillas.

Propiedades físicoquímicas

Las propiedades físicoquímicas más relevantes para el movimiento de los plaguicidas son la solubilidad en agua, la vida media y el coeficiente de partición por carbón orgánico.

La solubilidad es una medida de la afinidad del agroquímico para ser transportado por el agua. Aquellos de alta solubilidad (mayor a 30 miligramos por litro) presentan mayores posibilidades de ser movilizados disueltos en el agua.

La adsorción es la tendencia de los compuestos a adherirse a las partículas del suelo, especialmente a la materia orgánica y las arcillas. Esta tendencia se estudia mediante isotermas de adsorción, para lo cual diferentes concentraciones de plaguicidas son adicionadas a una masa de suelo. Se ha observado que los plaguicidas orgánicos, no iónicos, muestran una alta afinidad por la materia orgánica y en menor medida por las arcillas.

La afinidad de los plaguicidas por las partículas de suelo es determinada mediante un coeficiente
que relaciona la cantidad del producto en el suelo con la concentración de éste en una solución. El coeficiente indicado es altamente variable en los distintos tipos de suelo. Sin embargo, se ha observado que la variación se reduce cuando se considera el porcentaje de materia orgánica presente en el suelo. Este coeficiente es conocido como el coeficiente de partición por materia orgánica \((K_{om}) \) o coeficiente de partición por carbón orgánico \((K_{oc}) \). A mayor valor \(K_{oc} \), menor movilidad del plaguicida en forma soluble y, por tanto, menor riesgo de contaminación del agua subterránea. Sin embargo, al estar fuertemente adherido a las partículas de suelo, usualmente en los primeros centímetros, existe mayor riesgo de contaminación por arrastre de las aguas superficiales.

Cuadro 11. Clasificación de plaguicidas de acuerdo a su afinidad a la materia orgánica.

<table>
<thead>
<tr>
<th>Afinidad a la materia orgánica</th>
<th>Koc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muy baja</td>
<td>< 50</td>
</tr>
<tr>
<td>Baja</td>
<td>50-150</td>
</tr>
<tr>
<td>Media</td>
<td>150-500</td>
</tr>
<tr>
<td>Alta</td>
<td>500-2.000</td>
</tr>
<tr>
<td>Muy alta</td>
<td>> 2.000</td>
</tr>
</tbody>
</table>

La vida media describe la persistencia de los plaguicidas sobre un determinado substrato y condición. Existen valores de vida media para el follaje y suelo en condiciones aeróbicas y anaeróbicas. La vida media es el tiempo, usualmente medido en días, requerido para que la mitad de la masa del ingrediente activo sea degradada. Este concepto incluye una serie de procesos a través de los cuales los plaguicidas son degradados, por ejemplo degradación microbiana y química, absorción por la planta, hidrólisis, etc.

La vida media, al ser un factor que incluye la participación de las comunidades microbianas, no es un valor absoluto. Es más bien un rango de días que varía entre las distintas series de suelo y que es afectado por condiciones de humedad, temperatura, materia orgánica, pH del suelo y actividad microbiana. Los plaguicidas con mayor resistencia a la degradación tienen vidas medias mayores. La clasificación de la vida media de los plaguicidas se presenta en el cuadro 12.

Cuadro 12. Clasificación de persistencia de los plaguicidas sobre la base de su vida media.

<table>
<thead>
<tr>
<th>Persistencia</th>
<th>Vida media ((DT_{50}, \text{ días})^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extrema</td>
<td>> 120</td>
</tr>
<tr>
<td>Alta</td>
<td>120-60</td>
</tr>
<tr>
<td>Media</td>
<td>60-30</td>
</tr>
<tr>
<td>Ligera</td>
<td>30-15</td>
</tr>
<tr>
<td>No persistente</td>
<td>< 15</td>
</tr>
</tbody>
</table>

\(DT_{50} \): tiempo requerido (en días) para convertir el 50% de un plaguicida en otra(s) sustancia(s), en cualquiera de las matrices: suelo y agua.

Un plaguicida que presenta una vida media baja y alto \(K_{oc} \), utilizado en un suelo con alta materia orgánica y fuentes de agua lejanas al área tratada, tiene una baja probabilidad de llegar al agua. Por el contrario, existe una alta posibilidad de que al menos una parte del plaguicida llegue si tiene vida me-
día alta, es aplicado a un suelo con bajo contenido de materia orgánica y las fuentes de agua (esteros, napas freáticas) se encuentran cercanas al área tratada.

Los suelos que tienen la capacidad para retener los plaguicidas por un mayor tiempo, no permiten que éste pase a contaminar las aguas subsuperficiales, degradándose los plaguicidas con anterioridad. Por esa misma degradación, tampoco el suelo queda contaminado.

6.2. PLAGUICIDAS EVALUADOS

En el cuadro 13 se indica los plaguicidas empleados por los productores, en cada módulo, en el control de plagas y enfermedades que afectaron a sus cultivos durante el período de estudio.

Cuadro 13. Plaguicidas (ingredientes activos) empleados por los productores en el manejo de sus cultivos y huertos frutales.

<table>
<thead>
<tr>
<th>Ingredientes activos</th>
<th>Requínoa</th>
<th>San Fernando</th>
<th>Pichidegua</th>
<th>Chimbarongo</th>
<th>Teno</th>
<th>Curicó</th>
<th>Sagrada Familia</th>
<th>Molina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetoclor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazina</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clorpirifos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diazinon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dicofol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimetoato</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glifosato</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kresoxim-methyl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metidathion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metolaclor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miclobutanil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxifluorfen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propiconazol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triadimefon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dado que en el estudio de INIA se pretendió evaluar el movimiento de los plaguicidas en el agua de riego y determinar la eficiencia de los biofiltros en la reducción de su concentración, es necesario, primeramente, conocer algunas propiedades físicas y químicas de los productos empleados por los agricultores en el manejo de sus cultivos y huertos frutales. El cuadro 14 presenta su solubilidad en agua, presión de vapor, coeficiente de partición, coeficiente de adsorción y vida media.
Presión de vapor es la capacidad que tiene el plaguicida de pasar al aire. A mayor presión de vapor, mayor es la probabilidad de que el producto se volatilice.

Cuadro 14. Propiedades físicas y químicas de los ingredientes activos empleados por los productores.

<table>
<thead>
<tr>
<th>Ingrediente activo</th>
<th>Solubilidad en agua (mg/l)</th>
<th>Presión de vapor (mPa)</th>
<th>Coeficiente de partición (log Kow)</th>
<th>Coeficiente de adsorción Koc (mg/g)</th>
<th>Vida media (días)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetoclor</td>
<td>223</td>
<td>0,04</td>
<td>3,03</td>
<td>200</td>
<td>14</td>
</tr>
<tr>
<td>Atrazina</td>
<td>28</td>
<td>0,04</td>
<td>2,34</td>
<td>100</td>
<td>64</td>
</tr>
<tr>
<td>Clorpirifos</td>
<td>2</td>
<td>2,5</td>
<td>4,69</td>
<td>6.070</td>
<td>21</td>
</tr>
<tr>
<td>Diazinon</td>
<td>40</td>
<td>0,097</td>
<td>3,11</td>
<td>1.000</td>
<td>18,4</td>
</tr>
<tr>
<td>Dicofol</td>
<td>0,8</td>
<td>0,25</td>
<td>4,0</td>
<td>6.064</td>
<td>45</td>
</tr>
<tr>
<td>Dimetoato</td>
<td>25.000</td>
<td>1,1</td>
<td>0,7</td>
<td>20</td>
<td>7,2</td>
</tr>
<tr>
<td>Glifosato</td>
<td>12.000</td>
<td>2,5</td>
<td>3,22</td>
<td>24.000</td>
<td>12</td>
</tr>
<tr>
<td>Kresoxim-methyl</td>
<td>30</td>
<td>2,3</td>
<td>3,4</td>
<td>308</td>
<td>16</td>
</tr>
<tr>
<td>Metidathion</td>
<td>240</td>
<td>186</td>
<td>4,72</td>
<td>400</td>
<td>7</td>
</tr>
<tr>
<td>Metolaclor</td>
<td>530</td>
<td>1,7</td>
<td>3,45</td>
<td>200</td>
<td>21</td>
</tr>
<tr>
<td>Miclobutanil</td>
<td>142</td>
<td>0,00016</td>
<td>2,94</td>
<td>400</td>
<td>35</td>
</tr>
<tr>
<td>Oxifluorfen</td>
<td>0,116</td>
<td>0,026</td>
<td>4,86</td>
<td>17.636</td>
<td>35</td>
</tr>
<tr>
<td>Propiconazol</td>
<td>100</td>
<td>1,3</td>
<td>656</td>
<td>Indeterminada*</td>
<td></td>
</tr>
<tr>
<td>Triadimefon</td>
<td>260</td>
<td>< 0,1</td>
<td>3,18</td>
<td>300</td>
<td>26</td>
</tr>
</tbody>
</table>

Considerando las propiedades señaladas, es posible estimar la posibilidad de encontrar residuos de plaguicidas movilizándose en el agua de riego, según se indica en el cuadro 15.

Cuadro 15. Probabilidad de movilizarse en el agua de riego de 14 plaguicidas empleados por los productores, de acuerdo a las propiedades de sus ingredientes activos.

<table>
<thead>
<tr>
<th>Solubilidad en agua y afinidad por los sólidos del suelo</th>
<th>Ingrediente activo</th>
<th>Probabilidad de movilizarse en la fase líquida del suelo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muy solubles en agua y baja afinidad por los sólidos del suelo</td>
<td>Metolaclor, Dimetoato, Atrazina</td>
<td>Alta</td>
</tr>
<tr>
<td>Baja solubilidad en agua y baja retención por sólidos del suelo</td>
<td>Acetoclor, Kresoxim-methyl, Triadimefon, Miclobutanil, Metidathion</td>
<td>Regular</td>
</tr>
<tr>
<td>Baja solubilidad en agua y alta afinidad por sólidos del suelo</td>
<td>Clorpirifos, Propiconazol, Diazinon, Dicofol, Oxifluorfen</td>
<td>Baja</td>
</tr>
<tr>
<td>Muy alta solubilidad en agua y muy alta afinidad por sólidos del suelo</td>
<td>Glifosato</td>
<td>Indeterminada*</td>
</tr>
</tbody>
</table>

*El comportamiento de Glifosato es impredecible debido a que, siendo muy soluble en agua, es también fuertemente adsorbido por el suelo.
En el cuadro se aprecia que ingredientes activos como Metolaclor, Dimetoato y Atrazina, presentan alta probabilidad de movilizarse en el agua de riego. Glifosato, en cambio, tiene una alta solubilidad en el agua y, simultáneamente, una alta afinidad por los sólidos del suelo, lo cual hace impredecible determinar la probabilidad de encontrarlo en el agua de riego. Por lo tanto, en un estudio de esta naturaleza es fundamental conocer estas propiedades para poder comprender la dinámica de los residuos de plaguicidas en el suelo y en el agua.

Aun cuando los agroquímicos con una alta afinidad por los sólidos del suelo presentan baja probabilidad de movilizarse en la fase líquida, existe un riesgo potencial. En caso de un gran escurrimiento y erosión, el producto será transportado adsorbido en las partículas de suelo. Tal como se desprende del cuadro 15, Diazinon, Clorpirifos y Glifosato presentan una baja probabilidad de llegar al agua subterránea, porque no se mueven con facilidad en la fase líquida, pero sí pueden llegar a cursos de agua en los sedimentos arrastrados por el agua de lluvia o el riego. Los plaguicidas solubles presentan el riesgo de contaminar el agua subterránea y el agua superficial.

Para analizar el comportamiento de los plaguicidas en el agua, tanto de riego como de lluvias, así como la eficiencia de los biofiltros en su reducción, se separan aquellos aplicados al follaje de los cultivos o frutales y aquellos aplicados al suelo (del tipo “residual”), dado que conforman grupos con distintas propiedades.

6.3. PLAGUICIDAS APLICADOS AL FOLLAJE

Dentro de este grupo se analiza el comportamiento de Metidathion, Triadimefon, Dimetoato, Diazinon y Propiconazol, que fueron sistemáticamente empleados por los productores durante las tres temporadas de evaluación.

Movilidad en el agua

El estudio comparó las temporadas de riego con las de invierno, donde se analizaba el agua de lluvia que escurría por el predio. Entre ambas épocas se observó una gran diferencia en la cantidad de veces que fue posible determinar residuos de estos plaguicidas en las muestras de agua. La figura 7 presenta las detecciones de residuos de plaguicidas expresadas como porcentaje del número de muestreos, para cada residuo estudiado, en las temporadas de riego y de lluvias, respectivamente.
Figura 7. Detecciones de residuos de plaguicidas aplicados al follaje (%) en el agua de riego y en el agua de lluvias, en relación al número de muestreos.

Se puede deducir de la figura 7 que los plaguicidas, con excepción de Dimetoato y Diazinon, evidencian una reducción importante en las frecuencias con que son encontrados, al comparar la temporada de riego con la de lluvias. En promedio, en las temporadas de primavera–verano, en el 50% de las muestras es posible determinar la presencia de plaguicida en el agua de riego. En las temporadas de invierno, en cambio, es posible encontrar la presencia de alguno de estos agroquímicos sólo en el 25% de los casos. En otras palabras, luego de su aplicación en primavera–verano normalmente los plaguicidas no residuales son degradados rápidamente, inactivados por acción de luz solar o bien lixiviados con los riegos sucesivos.

Por otra parte, la concentración de residuos en el agua de lluvia que escurre en el predio durante el invierno es menor en un 59,4% respecto de la concentración en el agua de riego en las temporadas de verano (cuadro 16).

Cuadro 16. Concentración promedio de plaguicidas en el agua de riego y de lluvia.

<table>
<thead>
<tr>
<th>Ingrediente activo</th>
<th>Concentración promedio al ingreso en el BF (µg/l)</th>
<th>Reducción en invierno (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Riego</td>
<td>Invierno</td>
</tr>
<tr>
<td>Metidathion</td>
<td>1,02</td>
<td>0,32</td>
</tr>
<tr>
<td>Triadimefon</td>
<td>0,05</td>
<td>0,01</td>
</tr>
<tr>
<td>Dimetoato</td>
<td>0,02</td>
<td>0,02</td>
</tr>
<tr>
<td>Diazinon</td>
<td>0,26</td>
<td>0,13</td>
</tr>
<tr>
<td>Propiconazol</td>
<td>1,81</td>
<td>0,01</td>
</tr>
<tr>
<td>Promedio</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Los datos del cuadro 16 ratifican que los plaguicidas aplicados al follaje, en general, se degradan rápidamente o bien se pueden lixiviados en el perfil del suelo.
Eficiencia de los biofiltros en la reducción de residuos de plaguicidas no residuales, aplicados al follaje

Al contrastar la concentración de los residuos de plaguicidas al ingreso del área de los biofiltros, con su concentración a la salida, luego de pasar por BF$_1$ y BF$_2$, se estimó la eficiencia de estas asociaciones vegetales en la reducción de dichos contaminantes.

Dado que bajo condiciones de invierno el agua de lluvia presenta bajísimas concentraciones de residuos de plaguicidas, cualquier variabilidad analítica puede representar incrementos o reducciones porcentuales de gran magnitud, lo que no hace aconsejable determinar la eficiencia de los biofiltros para esa condición.

En el cuadro 17 se presenta la eficiencia de los biofiltros durante la temporada de riego. En general se evidencia que, dada la pequeñez de las concentraciones de estos residuos en el agua de riego, la eficiencia de los biofiltros también es baja, excepto en Propiconazol. El promedio flucúa entre 10,5% y 18,6%. Ello, con grandes diferencias entre los ingredientes activos y los biofiltros evaluados, propias del trabajo con datos de esa magnitud, muy sensibles a la variabilidad de los muestreos, de los procedimientos analíticos y de las determinaciones.

Cuadro 17. Eficiencia de los biofiltros en la reducción de residuos de plaguicidas aplicados al follaje, en el agua de riego.

<table>
<thead>
<tr>
<th>Plaguicida</th>
<th>BF1</th>
<th>BF2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metidathion</td>
<td>14,4</td>
<td>1,0</td>
</tr>
<tr>
<td>Triadimefon</td>
<td>6,3</td>
<td>50,1</td>
</tr>
<tr>
<td>Dimetoato</td>
<td>0,0</td>
<td>3,7</td>
</tr>
<tr>
<td>Diazinon</td>
<td>0,0</td>
<td>2,2</td>
</tr>
<tr>
<td>Propiconazol</td>
<td>31,9</td>
<td>36,1</td>
</tr>
<tr>
<td>Promedio</td>
<td>10,5</td>
<td>18,6</td>
</tr>
</tbody>
</table>

Los plaguicidas de este grupo tienen una vida media relativamente corta, porque se degradan por hidrólisis, volatilización o por acción de microorganismos, y presentan una baja afinidad por los coloides del suelo. Considerando tales características y propiedades generales, se puede concluir que son residuos con una moderada a baja probabilidad de movilizarse en el agua. Ocasionalemente pueden encontrarse en el agua de riego o lluvias que escurre en el predio, en bajas concentraciones, o bien podrían lixiviarse en el perfil del suelo.

6.4. PLAGUICIDAS RESIDUALES

En este grupo se analiza el comportamiento de Metolaclor, Atrazina, Clorpirifos y Acetoclor, que fueron empleados sistemáticamente por los productores durante los tres años de evaluación, especialmente en el cultivo de maíz.

Movilidad en el agua

Se comparó las temporadas de riego con las de invierno (agua de lluvia). Entre ambas épocas se
observó una gran diferencia en la cantidad de veces que fue posible determinar residuos de estos plaguicidas en las muestras de agua. En la figura 8 se grafica las detecciones de residuos de plaguicidas expresadas como porcentaje del número de muestreos, para cada residuo estudiado, en las temporadas de riego y de lluvias, respectivamente.

Figura 8. Detecciones de residuos de plaguicidas residuales (%) en el escurrimiento de aguas de riego y lluvias, en relación al número de muestreos.

En la figura 8 se aprecia que sólo Metolaclor, dado que es un residuo muy soluble en agua y de baja afinidad por los coloides del suelo, se moviliza con facilidad en el agua. Es detectado en el 94,7% de los muestreos en la temporada de riego y en el 66,7% en el escurrimiento de aguas de lluvia.

Clorpirífos, es determinado en el 79,2% de las muestras durante las temporadas de riego y sólo en el 16,7% de los muestreos de invierno, puesto que este ingrediente activo se pierde rápidamente por volatilización y fotólisis, siendo, en general, inestable en agua.

Atrazina, a pesar de ser soluble en agua, es encontrado sólo en el 34,8% de los muestreos realizados durante las temporadas de riego y en el 6,7% de los efectuados en el invierno. Esto se puede explicar porque se trata de un ingrediente activo que se degrada rápidamente a diferentes metabolitos (Mahía y Díaz-Raviña, 2007).

Al considerar el promedio ponderado para los cuatro residuos, mientras en la temporada de riego es posible detectar estos plaguicidas en el 66,7% de los muestreos, en la de invierno son determinados sólo en el 22,4% de las muestras.

Es posible concluir que estos plaguicidas son transportados principalmente en los riegos dados luego de su aplicación. Además, durante el invierno se observa una escasa presencia en las aguas lluvias que escurren superficialmente, en especial con precipitaciones inferiores a 30 mm.

Adicionalmente, al analizar las concentraciones de residuos de plaguicidas en las aguas lluvia, se aprecia que están muy por debajo de las encontradas en la temporada de riego, tal como se evidencia en las figuras 9; 10; 11 y 12.
Figura 9. Concentración de Metolaclor (µg/l) al ingreso del área de biofiltros, bajo condiciones de riego y de lluvia. Promedio de tres (3) temporadas.

Figura 10. Concentración de Clorpirifos (µg/l) al ingreso del área de biofiltros, bajo condiciones de riego y de lluvia. Promedio de tres (3) temporadas.
Figura 11. Concentración de Acetoclor (µg/l) al ingreso del área de biofiltros, bajo condiciones de riego y de lluvia. Promedio de tres (3) temporadas.

Figura 12. Concentración de Atrazina (µg/l) al ingreso del área de biofiltros, bajo condiciones de riego y de lluvia. Promedio de tres (3) temporadas.

Las concentraciones de Metolaclor (figura 9) durante el invierno, cuando es posible su determinación, se reducen a 1,72 µg/l, es decir un 73,0%, en promedio, respecto a las determinaciones realizadas en la temporada de riego. La concentración de Clorpirifos (figura 10) en el agua lluvia es de sólo 0,03 µg/l, con una disminución de un 71,1%. En Acetoclor (figura 11) la concentración baja a 0,03 µg/l, vale decir en un 90,2%. Atrazina (figura 12) se reduce a sólo 0,41 µg/l, o sea un 87,7% menos respecto de las determinaciones realizadas en el agua de riego. En la figura 13 se resume esta situación.
Figura 13. Reducción de la concentración de residuos de plaguicidas residuales (%) en agua lluvia, en relación al agua de riego. Promedio de tres (3) temporadas.

El bajo número de muestras en que es posible detectar estos ingredientes activos durante el invierno y la notable reducción en su concentración en las aguas lluvias que escurren en el predio (en promedio un 80,5%), permiten concluir que el problema de los residuos de plaguicidas toma su real importancia durante las temporadas de riego.

Eficiencia de los biofiltros en la reducción de residuos de plaguicidas residuales

Se contrastó la concentración de de plaguicidas residuales en el agua que ingresa al área de los biofiltros y la que sale, luego de atravesar la asociación vegetal.

En Metolaclor, Clorpirífos y Atrazina, fue posible constatar una tendencia, cosa que no ocurrió con Acetoclor, debido a la variabilidad observada en las eficiencias a través del tiempo en los módulos estudiados. Por ello esta última variable no se considera en el análisis siguiente.

En las figuras 14 y 15, se ilustra la eficiencia promedio, luego de tres temporadas de evaluaciones, del BF₁ y BF₂, bajo condiciones de riego y de lluvias (invierno), respectivamente.

Mientras en la temporada de riego se logra una eficiencia promedio de 32,4% en BF₁ y de 28,5% en BF₂, en invierno, aunque el número de detecciones es muchísimo menor, la eficiencia de los biofiltros es incluso superior, puesto que BF₁ alcanza en promedio un 48,3% y BF₂ un 38,4%.
Un aspecto relevante al analizar el comportamiento promedio en las temporadas de riego y de lluvias, es que el BF$_1$ alcanzó una eficiencia de un 40,3%, mientras que el BF$_2$ logró un 33,5% (figura 16). Para todos los residuos analizados, con excepción de Atrazina, el BF$_1$ presentó una eficiencia mayor al BF$_2$.

Figura 14. Eficiencia de los biofiltros, promedio de tres temporadas, en la reducción de residuos de plaguicidas en el agua de riego.

Figura 15. Eficiencia de los biofiltros, promedio de tres temporadas, en la reducción de residuos de plaguicidas en agua lluvia.
Figura 16. Eficiencia promedio de los biofiltros, durante tres temporadas, en la reducción de residuos de plaguicidas en agua de riego y de lluvias.

Por tanto se puede estimar que para el caso de los residuos de plaguicidas es importante incluir al menos dos estratas, una herbácea y otra arbustiva/arbórea. Esto permitiría capturar en forma más eficiente los residuos, ya que la pradera reduce la velocidad del agua y aumenta su tiempo de residencia, en tanto que la estrata arbustiva–arbórea otorga al suelo una mayor porosidad y mejor capacidad de infiltración del agua que se mueve superficialmente sobre él.

Bagdon, et al. (2000), en trabajos realizados por el USDA, reportan estudios sobre la eficiencia de los biofiltros en la remoción de plaguicidas en agua de escorrentía superficial. Indican que el aumento en la infiltración del agua es el factor que de mejor manera permite explicar la reducción de plaguicidas en ella. Sus resultados son corroborados por investigadores de Washington State University (2006, http://pnw-ag.wsu.edu/AgHorizons/index.htm), quienes señalan que, para mejorar la eficiencia en la remoción de plaguicidas solubles, un factor importante es propiciar la infiltración del agua o maximizar la superficie de contacto (escorrentía–suelo–vegetación), lo cual facilita la adsorción del contaminante. Estos últimos autores señalan, además, que la masa de raíces de árboles o arbustos permite el establecimiento de microorganismos comunes en el suelo, capaces de degradar las cadenas carbonadas que conforman los plaguicidas y utilizarlas como fuentes de carbono para sus procesos metabólicos.

Los resultados permiten concluir que el mayor problema de los residuos de plaguicidas corresponde al grupo de los residuales aplicados al suelo durante la temporada de riego.

A continuación se presenta en forma detallada el comportamiento de los plaguicidas residuales (Metolaclor, Clorpirifos y Atrazina) durante las tres temporadas de primavera–verano evaluadas (2004/05; 2005/06 y 2006/07) y la eficiencia de los biofiltros en su reducción.
Metolaclor

Movilidad en el agua de riego

Herbicida ampliamente empleado en numerosos cultivos, especialmente en maíz, para el control de malezas gramíneas. Presenta una moderada persistencia en el suelo. Sin embargo, posee una alta persistencia en el agua, con una vida media superior a 200 días en ella.

El nivel de “traza” definido es de 0,18 µg/l, mientras que el nivel de “no detección” es de 0,09 µg/l, para los residuos en el agua de riego. En la que ingresó a los potreros en los módulos en estudio, las concentraciones de Metolaclor encontradas correspondieron sólo a nivel de trazas. La única excepción fue una muestra tomada en Chimbarongo durante la temporada de riego 2006/07, que superó este límite e incrementó el promedio. La concentración del mismo ingrediente activo en el agua de riego al ingreso del área de biofiltros delata un importante incremento (cuadro 18). Los valores promedio fluctúan entre 4,4 y 7,3 µg/l, niveles superiores en 2.594 y 5.741% (4.385% más, en promedio de todas las mediciones) respecto al agua antes de pasar por el potrero.

Cuadro 18. Concentración de Metolaclor (µg/l) en el agua de riego al ingreso a potrero y al área de biofiltros. Promedio de tres temporadas.

<table>
<thead>
<tr>
<th>Módulo</th>
<th>Ingreso a potrero (µg/l)</th>
<th>Ingreso al área de biofiltros (µg/l)</th>
<th>Incremento de Metolaclor en relación al ingreso a potrero (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chimbarongo</td>
<td>0,272</td>
<td>7,326</td>
<td>2.594</td>
</tr>
<tr>
<td>San Fernando</td>
<td>0,092</td>
<td>5,374</td>
<td>5.741</td>
</tr>
<tr>
<td>Curicó*</td>
<td>0,090</td>
<td>4,429</td>
<td>4.821</td>
</tr>
<tr>
<td>Promedio</td>
<td>0,151</td>
<td>5,710</td>
<td>4.385</td>
</tr>
</tbody>
</table>

*Se registró información sólo en la temporada 2006/07.

Las cifras evidencian que los residuos de Metolaclor se transportan fácilmente en el agua de riego, contaminando cursos de agua y acuíferos subterráneos, con los consiguientes riesgos para el ambiente y la salud humana. Como se aplica normalmente de presiembra incorporado, la mayor parte de este ingrediente activo es transportado en el primer riego. Por tanto, resulta vital que los productores tomen las debidas precauciones: emplear las dosis adecuadas y trabajar con equipos en buenas condiciones de operación, debidamente regulados. En la figura 17, donde se grafica la situación descrita, queda claramente establecido que los incrementos se manifiestan principalmente en los primeros muestreos, en estrecho vínculo con la época de aplicación.
Figura 17. Concentración de Metolaclor (µg/l), en el agua de riego al ingreso del potrero y del área de biofiltro, en cada evento de riego, para las tres temporadas en los tres módulos en que se empleó este Ingrediente Activo.

El cuadro 19 indica la concentración de Metolaclor a la salida de los biofiltros, en las tres temporadas de evaluación. Al contrastarla con la carga de ingreso es posible estimar la eficiencia en la reducción de la concentración de este plaguicida.

Cuadro 19. Concentración de Metolaclor (µg/l) al ingreso y salida del área de biofiltros, y eficiencia de los biofiltros en su remoción (%).

El cuadro 19 señala que el BF\textsubscript{1}, conformado por una estrata herbácea y otra arbustiva y/o arbórea, presenta en promedio una eficiencia de un 40,6%. La cifra es superior al BF\textsubscript{2}, constituido sólo por una pradera, cuya eficiencia alcanza al 33,4%. La eficiencia lograda por ambos biofiltros en la remoción de este contaminante se considera como media.

Rango de funcionamiento de los biofiltros para Metolaclor

Con la finalidad de definir la eficiencia de los biofiltros en la reducción de Metolaclor según la concentración en el agua, se estableció una regresión entre las dos variables, que arrojó la siguiente ecuación:

-56-
Figura 18. Eficiencia en la reducción de Metolaclor, según su concentración en el agua de riego.

Al integrar todos los registros, se evidencia que el BF₁ presenta una mayor eficiencia, pudiendo llegar a un máximo de un 96%, mientras que el BF₂ puede lograr sólo un 72%. Ambos alcanzan su mejor nivel cuando la concentración de Metolaclor en el agua de riego fluctúa entre 2 y 3 µg/l, disminuyendo hacia ambos extremos.

La mayor eficiencia de BF₁ se puede explicar porque corresponde a una asociación vegetal conformada por al menos dos estratas. En ellas se encuentra un mayor volumen de raíces, especialmente en profundidad, lo que da al suelo una mayor capacidad de infiltración del agua en su perfil. Este proceso facilita la remoción de los residuos que viajan adsorbidos a partículas sólidas o materia orgánica y se produce una depositación en capas superficiales del suelo, con la consecuente remoción del ingrediente activo del sistema.

Clorpirifos

Movilidad en el agua de riego

Insecticida muy utilizado en numerosos cultivos, sobre todo para el control de insectos del suelo. Su permanencia en el agua depende más que nada de su formulación: es mayor cuando se aplica como emulsión concentrada o polvo mojable. Sin embargo, se pierde rápidamente por volatilización y fotólisis; en general es inestable en agua.

El nivel de “traza” definido es de 0,013 µg/l, mientras que el nivel de “no detección” es de 0,0065 µg/l, para los residuos encontrados en el agua de riego.

Durante todos los muestreos, sólo en Requínoa el agua que ingresaba al potrero presentó niveles inferiores al determinado como “traza”. En las otras localidades en varias oportunidades el agua que accedía al potrero presentó niveles superiores a 0,013 µg/l. El promedio de todas las temporadas llegó a 0,032 µg/l. Es decir que, a pesar de ser considerado, por sus propiedades físicas y químicas, como de baja probabilidad de movilizarse en el agua de riego, este ingrediente activo es transportado desde predios o potreros contiguos. El amplio uso del insecticida Clorpirifos en estas regiones constituye la causa más probable del fenómeno (cuadro 20).

<table>
<thead>
<tr>
<th>Módulo</th>
<th>Ingreso a potrero (µg/l)</th>
<th>Ingreso al área de biofiltros (µg/l)</th>
<th>Incremento Clorpirífos (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pichidegua</td>
<td>0,056</td>
<td>0,082</td>
<td>46</td>
</tr>
<tr>
<td>S. Familia</td>
<td>0,019</td>
<td>0,169</td>
<td>784</td>
</tr>
<tr>
<td>Requínoa</td>
<td>0,010</td>
<td>0,055</td>
<td>466</td>
</tr>
<tr>
<td>Chimbarongo</td>
<td>0,078</td>
<td>0,133</td>
<td>70</td>
</tr>
<tr>
<td>San Fernando</td>
<td>0,018</td>
<td>0,064</td>
<td>262</td>
</tr>
<tr>
<td>Teno</td>
<td>0,027</td>
<td>0,058</td>
<td>110</td>
</tr>
<tr>
<td>Curicó</td>
<td>0,018</td>
<td>0,281</td>
<td>1.432</td>
</tr>
<tr>
<td>Promedio</td>
<td>0,032</td>
<td>0,120</td>
<td>453</td>
</tr>
</tbody>
</table>

La concentración de Clorpirífos tiene un importante incremento entre el ingreso del agua de riego al potrero y su llegada al área de biofiltros. El cuadro 20 evidencia valores promedio que fluctúan entre 0,055 y 0,281 µg/l, lo cual representa aumentos entre 46 y 1.432% respecto de lo detectado al inicio, con un promedio en todos los módulos de un 453%. Los mayores incrementos se alcanzan en Sagrada Familia, Chimbarongo y Curicó, predios donde se cultiva maíz y maravilla, con aplicaciones importantes para el control de insectos del suelo.

Los resultados revelan que, a pesar de sus propiedades, este ingrediente activo se moviliza en el agua de riego, probablemente adsorbido a las partículas del suelo, con los riesgos ambientales que ello implica dado su masivo uso como insecticida, especialmente aplicado al suelo. Se pudo observar que la mayor cantidad es transportada en el primer riego luego de su aplicación, como se grafica en la figura 19.

![Figura 19. Concentración de Clorpirífos (µg/l) en el agua de riego al ingreso del potrero y del área de biofiltros, en cada evento de riego, para la temporada 2006/07.](image)

El cuadro 21 presenta la concentración promedio de Clorpirífos al ingreso y salida del área de biofiltros, así como la eficiencia de éstos en la remoción del ingrediente activo en las tres temporadas de evaluación.
Cuadro 21. Concentración de Clorpirifos (µg/l) al ingreso y salida del área de biofiltros, y eficiencia de los biofiltros en su reducción (%).

<table>
<thead>
<tr>
<th>Módulo</th>
<th>Concentración de Clorpirifos (µg/l) en el agua de riego al ingreso del área de biofiltros</th>
<th>Concentración de Clorpirifos (µg/l) en el agua de riego a la salida de BF1</th>
<th>Concentración de Clorpirifos (µg/l) en el agua de riego a la salida de BF2</th>
<th>Eficiencia en la remoción de Clorpirifos en BF1 (%)</th>
<th>Eficiencia en la remoción de Clorpirifos en BF2 (%)</th>
<th>Eficiencia promedio en la remoción de Clorpirifos (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pichidegua</td>
<td>0,017 0,141 0,088 0,011 0,032 0,056 0,011 0,056 0,075</td>
<td>35,3 77,3 36,4</td>
<td>35,3 60,3 14,8</td>
<td>49,7 36,8</td>
<td>49,7 36,8</td>
<td></td>
</tr>
<tr>
<td>S. Familia</td>
<td>0,078 0,042 0,388 0,040 0,004 0,022 0,037 0,022 0,140</td>
<td>48,7 90,5 94,3</td>
<td>52,6 47,6 63,9</td>
<td>77,8 54,7</td>
<td>77,8 54,7</td>
<td></td>
</tr>
<tr>
<td>Requínóa</td>
<td>0,138 0,007 0,022 1,422 0,007 0,007 1,213 0,007 0,008</td>
<td>0,0 - 68,2</td>
<td>0,0 - 63,6</td>
<td>34,1 31,8</td>
<td>34,1 31,8</td>
<td></td>
</tr>
<tr>
<td>Chimbarongo</td>
<td>0,231 0,061 0,105 0,090 0,009 0,038 0,093 0,038 0,043</td>
<td>61,0 85,2 63,8</td>
<td>59,7 37,7 59,0</td>
<td>70,0 52,2</td>
<td>70,0 52,2</td>
<td></td>
</tr>
<tr>
<td>San Fernando</td>
<td>0,017 0,064 0,110 0,013 0,113 0,059 0,017 0,059 0,099</td>
<td>23,5 0,0 46,4</td>
<td>0,0 7,8 10,0</td>
<td>23,3 5,9</td>
<td>23,3 5,9</td>
<td></td>
</tr>
<tr>
<td>Teno</td>
<td>0,010 0,026 0,137 0,010 0,053 0,100 0,005 0,100 0,127</td>
<td>- 0,0 27,0</td>
<td>50,0 0,0 7,3</td>
<td>13,5 19,1</td>
<td>13,5 19,1</td>
<td></td>
</tr>
<tr>
<td>Promedio</td>
<td></td>
<td></td>
<td></td>
<td>33,7 50,6 56,0</td>
<td>32,9 30,7 36,4</td>
<td>44,7 33,4</td>
</tr>
</tbody>
</table>
En el cuadro 21 se aprecia la mayor eficiencia en la remoción de Clorpirifos en el BF1, con un 44,7%. Supera al BF2, constituido sólo por una pradera, que alcanzó una eficiencia de 33,4%. La eficiencia de ambos biofiltros se puede considerar como media.

Rango de funcionamiento de los biofiltros para Clorpirifos

La relación entre la eficiencia de los biofiltros en la reducción de Clorpirifos y su concentración en el agua, permite establecer una regresión entre las dos variables, que arroja la ecuación ilustrada en la figura 20.

Figura 20. Eficiencia en la reducción de Clorpirifos, según su concentración en el agua de riego.

La imagen muestra una eficiencia para reducir el Clorpirifos del agua de riego muy similar en ambos biofiltros. El máximo de aproximadamente un 70% se logra cuando las concentraciones del ingrediente activo en el agua de riego fluctúan entre 0,15 y 0,25 µg/l, disminuyendo hacia ambos extremos.

Atrazina

Movilidad en el agua de riego

Este herbicida, en la actualidad, es la base para el control de malezas del maíz. Por ello los productores del cereal lo utilizan ampliamente. Es soluble en agua y, en consecuencia, presenta una alta probabilidad de movilizarse a través de ella. Sin embargo, se degrada rápidamente en el agua, por hidrólisis.

Para los residuos encontrados en el agua de riego, el nivel de “traza” definido es de 0,80 µg/l; el de “no detección”, 0,40 µg/l.

El cuadro 22 muestra que el contenido de Atrazina en el agua que ingresa al potrero en evaluación en los módulos de Sagrada Familia y San Fernando, en promedio, no superó el nivel de “traza”. En Pichidegua este límite se superó en forma leve, debido probablemente a que en el predio se siembra una superficie importante de maíz, del orden de 800 hectáreas, y el control de malezas se hace sobre la base de aplicaciones de Atrazina y Acetoclor.

Cuadro 22. Concentración promedio de Atrazina (µg/l) en el agua de riego al ingreso a potrero y al área de biofiltros.

<table>
<thead>
<tr>
<th>Módulo</th>
<th>Ingreso a potrero (µg/l)</th>
<th>Ingreso al área de biofiltros (µg/l)</th>
<th>Incremento de Atrazina (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pichidegua</td>
<td>0,842</td>
<td>0,878</td>
<td>4</td>
</tr>
<tr>
<td>Sagrada Familia</td>
<td>0,640</td>
<td>1,313</td>
<td>105</td>
</tr>
<tr>
<td>San Fernando</td>
<td>0,494</td>
<td>7,781</td>
<td>1.475</td>
</tr>
<tr>
<td>Promedio</td>
<td>0,659</td>
<td>3,324</td>
<td>528</td>
</tr>
</tbody>
</table>

Se contrastó la concentración de Atrazina en el agua de riego que accede al potrero en evaluación con aquella en la que ingresa al área de biofiltros, luego de atravesar el sector de cultivos. En los módulos de San Fernando y Sagrada Familia se apreció un incremento importante en la concentración de este ingrediente activo en el agua de riego: 1.475% y 105%, respectivamente. El gran aumento observado en San Fernando se podría explicar porque en este predio, a diferencia de los otros dos, se hacen dos aplicaciones de Atrazina al cultivo del maíz, la primera en forma de Primagram de presiembra incorporado y la segunda como Atrazina propiamente tal, de postemergencia temprana.

La literatura indica que la Atrazina es un compuesto que sufre transformaciones en su molécula, convirtiéndola en metabolitos que no fueron analizados y que podrían explicar el comportamiento en el módulo de Pichidegua. Allí no se detectaron grandes diferencias en su concentración en el agua que ingresa y sale del potrero. En este predio se riega en mezcla con purines de cerdo y su elevado nivel de materia orgánica podría inmovilizar este residuo.

Las características ya señaladas de Atrazina en cuanto a hidrolizarse rápidamente en el agua y sufrir transformaciones, hacen difícil encontrar esta molécula como tal. Del análisis de la figura 21 se deduce que en general la Atrazina se moviliza luego del primer riego del cultivo, pues se aplica normalmente de presiembra incorporado, siendo posible su determinación sólo en este evento. En el resto de los riegos la concentración de Atrazina en el agua al ingreso del área de biofiltros es similar a la determinada en el momento de acceder al potrero.

Figura 21. Concentración de Atrazina (µg/l), en el agua de riego al ingreso del potrero y del área de biofiltros, en cada evento de riego, en tres temporadas.
El cuadro 23 detalla la concentración promedio de Atrazina al ingreso y salida del área de biofiltros, así como la eficiencia de éstos en la remoción de este ingrediente activo, en las tres temporadas de evaluación.

Cuadro 23. Concentración de Atrazina (µg/l) al ingreso y salida del área de biofiltros, y eficiencia de los biofiltros en su reducción (%).

<table>
<thead>
<tr>
<th>Módulo</th>
<th>Concentración de Atrazina (µg/l) en el agua de riego al ingreso del área de biofiltros</th>
<th>Concentración de Atrazina (µg/l) en el agua de riego a salida de BF1</th>
<th>Concentración de Atrazina (µg/l) en el agua de riego a salida de BF2</th>
<th>Eficiencia en la remoción de Atrazina en BF1 (%)</th>
<th>Eficiencia en la remoción de Atrazina en BF2 (%)</th>
<th>Eficiencia promedio en la remoción de Atrazina (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2004/05</td>
<td>2005/06</td>
<td>2006/07</td>
<td>2004/05</td>
<td>2005/06</td>
<td>2006/07</td>
</tr>
<tr>
<td>Pichidegua</td>
<td>0,400</td>
<td>1,833</td>
<td>0,400</td>
<td>0,400</td>
<td>3,965</td>
<td>0,400</td>
</tr>
<tr>
<td>S. Familia</td>
<td>0,648</td>
<td>0,400</td>
<td>2,890</td>
<td>0,769</td>
<td>0,400</td>
<td>2,000</td>
</tr>
<tr>
<td>San Fernando</td>
<td>1,207</td>
<td>11,998</td>
<td>10,140</td>
<td>0,479</td>
<td>30,767</td>
<td>10,140</td>
</tr>
<tr>
<td>Promedio</td>
<td>30,2</td>
<td>0,0</td>
<td>15,4</td>
<td>33,9</td>
<td>19,0</td>
<td>25,0</td>
</tr>
</tbody>
</table>
Salvo en algunas localidades, en general los biofiltros alcanzan una baja eficiencia en la reducción de Atrazina. Luego de tres temporadas de evaluación, la eficiencia promedio fluctúa entre 11,8% y 18,6% en el BF1 y BF2, respectivamente. En Pichidegua se logró una eficiencia de 0%. Por las características de este ingrediente activo, de rápida hidrólisis en el agua, la analítica de la molécula de Atrazina pareciera ser no muy adecuada y se debe investigar algunos metabolitos derivados de ella (Mahía y Díaz-Raviña, 2007).

6.5. CONCLUSIONES
Las principales conclusiones obtenidas al estudiar los residuos de plaguicidas en el agua de riego y la eficiencia de los biofiltros en la reducción de su concentración, se sintetizan a continuación:
- Una parte de los plaguicidas no residuales cae al suelo luego de su aplicación y es degradada rápidamente, inactivada por acción de luz solar o bien se pierde en profundidad junto al movimiento del agua y no alcanza a llegar al área de los biofiltros. Son detectados sólo en un 50% de las muestras durante la temporada de riego, y en un 25% en las aguas lluvia de invierno.
- Las concentraciones en el agua de riego de aquellos plaguicidas aplicados al follaje superan ligeramente los límites mínimos de cuantificación o trazas. En la temporada de invierno, en promedio, su concentración disminuye en un 59,4%.
- La eficiencia de los biofiltros para reducir la concentración de plaguicidas no residuales en el agua de riego se considera baja; entre 10,5% y 18,6%, para BF1 y BF2, respectivamente, dado que su concentración es reducida. No se estimó conveniente calcular la eficiencia de los biofiltros para reducir estos contaminantes en las aguas lluvia de invierno, pues las concentraciones de sus residuos es muy pequeña, cercana al límite de cuantificación.
- Los plaguicidas residuales, aplicados al suelo, son detectados en el 66,7% de las muestras tomadas en el agua de riego y sólo en el 22,4% de aquellas tomadas en las aguas lluvia durante el invierno. Sus niveles en el agua lluvia que escurre en los predios fueron mínimos, cercanos al límite de cuantificación. La baja en su concentración respecto de los niveles encontrados en el agua de riego correspondió a un 69,6%.
- La eficiencia promedio de los biofiltros en la disminución de plaguicidas residuales, incluyendo las temporadas de riego y de lluvias, se ubica en 40,3% en el BF1 y en 33,5% en el BF2. Tanto en el agua de riego como de lluvia, el BF1 resultó más eficiente en el abatimiento de prácticamente todos los ingredientes activos. Ello se debe a que está conformado por al menos dos estratas, con sistemas radiculares de diferente profundidad, lo cual permite mejorar la porosidad del suelo y por tanto la infiltración del agua y la captura de los contaminantes disueltos.
- Las mayores eficiencias se logran con aquellos productos que presentan mayor solubilidad y movilidad en el agua de riego, como Metolaclor y Clorpirifos, con eficiencias de 40,6% y 44,7%, respectivamente.
- El bajo número de muestras en que fue posible detectar estos ingredientes activos durante el invierno y su mínima concentración en las aguas lluvias que escurren en el predio, permiten concluir que el problema de los residuos de plaguicidas adquiere su real importancia durante las temporadas de riego.
- Los biofiltros son una buena herramienta para reducir el nivel de residuos de plaguicidas contenidos en el agua de riego y se pueden considerar como una “buena práctica agrícola”.
BIBLIOGRAFÍA CONSULTADA

7. BIOFILTROS Y SU EFICIENCIA EN LA REMOCIÓN DE NITRATOS
José María Peralta Alba

El agua dulce constituye un recurso natural renovable, único y escaso, sometido constantemente a un conflicto de intereses por su uso. En Chile, en términos globales, el riego de cultivos utiliza cerca del 63% de la disponibilidad de este recurso. La actividad silvoagropecuaria produce un impacto en los recursos naturales, en especial en los hídricos, fundamentalmente por la aplicación de plaguicidas y nutrientes, y por el arrastre de sedimentos debido a la utilización de técnicas de riego poco apropiadas. Entre los nutrientes, el de mayor riesgo para el ambiente resulta ser el nitrógeno, dadas sus características y propiedades. Contribuye a la contaminación difusa, la cual, como se vio en el capítulo 2, consiste en la alteración de la calidad en cuerpos de agua superficiales o subterráneos, expresada principalmente a través del incremento de sólidos en suspensión, de nutrientes, sales, compuestos orgánicos y presencia de compuestos biotóxicos, como residuos de plaguicidas.

Este aspecto negativo de la actividad agrícola afecta de modo particular a la agricultura de Chile, país que procura convertirse en potencia mundial en agroalimentación. En la actualidad exporta al mundo frutas, hortalizas y otros productos silvoagropecuarios, los que deben cumplir con las más exigentes normas de calidad, seguridad e inocuidad, respeto por el medio ambiente y leyes laborales.

7.1. EFECTO DE LOS NITRATOS SOBRE EL AMBIENTE

Con una visión únicamente agronómica, y en consecuencia parcial, se podría indicar que el fenómeno de la contaminación por nitratos se produce por acumulación –primero en el suelo y luego, tras su lavado, en las aguas– de excedentes de nitrógeno (en forma de nitratos) que se han aportado a través de fertilizantes (minerales u orgánicos) aplicados al suelo.

Para una visión más amplia del problema, se puede señalar el informe “Global environment outlook 2000”, del Programa Medioambiental de Naciones Unidas de 1999. En él se indica: “hay una evidencia creciente sobre el hecho de que las enormes cantidades de nitrógeno utilizadas están exacerbando la acidificación, produciendo cambios de composición de especies en los ecosistemas, incrementando los niveles de nitratos en el agua de abastecimiento, por encima de los niveles aceptables para el consumo humano, y eutrofización en muchos hábitat de agua dulce”. Además, las aguas residuales y fertilizantes ricos en nitrógeno vertidos en los ríos, tienden a estimular la explosión de las algas en las aguas costeras, que a su vez conducen a la privación de oxígeno y subsiguiente muerte de los peces, reduciendo la biodiversidad marina a través de la competencia. Por otra parte, las emisiones de nitrógeno a la atmósfera contribuyen al calentamiento global.

En la actualidad existe consenso entre los investigadores en el sentido de que la alteración del ciclo del nitrógeno puede tener implicaciones globales comparables a las causadas por la ruptura del ciclo del carbono (Programa Ambiental de Naciones Unidas, 1999; citado por Orús, Quílez y Beltrán, 2000).
Los orígenes agrícolas de la contaminación por nitratos

Si bien el nitrógeno abunda en la atmósfera (un 78% en volumen), es, por el contrario, escaso en el suelo y tiene que ser fijado por microorganismos y raíces de determinadas plantas, para poder estar disponible como nutriente de los cultivos (Orús, Quílez y Beltrán, 2000).

Desde el momento en que el hombre descubrió la agricultura y hasta épocas muy recientes, el cultivo de las especies vegetales que buscaba para su sustento y el de los animales domésticos, se realizó en una situación de equilibrio para los nutrientes principales (nitrógeno, fósforo y potasio). Éstos son extraídos desde el suelo por los cultivos, y luego restituidos progresivamente a través de las deyecciones animales, basuras orgánicas y aporte de las especies leguminosas (que dejan un excedente de nitrógeno para el cultivo siguiente), así como la práctica del barbecho. La climatología de cada lugar, y su acción sobre el suelo, determinan en cada situación una correlación entre el clima y la capacidad productiva de una determinada masa vegetal (Orús, Quílez y Beltrán, 2000).

Sin embargo, la intervención humana, a través de la práctica de una ganadería y agricultura intensiva, está incidiendo en el ciclo del nitrógeno en diferentes aspectos. Puede decirse que la agricultura moderna introduce en el suelo una cantidad de nitrógeno entre tres y diez veces superior que la recibida en condiciones naturales, y en formas mucho más solubles, como amonio y nitrato. Según Vitousek, 1997 (citado por Orús, Quílez y Beltrán, 2000), los fertilizantes minerales proporcionarían un 60% en este aporte creciente de nitrógeno (N), el cultivo de leguminosas supondría un 25%, y la utilización de combustibles fósiles aproximadamente un 12%.

Efectos sobre las aguas

Los efectos de dosis crecientes de fertilizantes nitrogenados aplicados al suelo se pueden observar sobre la producción, contenido de nitrógeno en la planta y residuos de nitrógeno mineral en el suelo.

El N total extraído por la planta se incrementa rápidamente hasta un nivel máximo, coincidente con la máxima producción, y permanece constante aunque crezcan los aportes. La planta no aprovecha más nitrógeno. Esta respuesta es generalizable a todo tipo de cultivos, y queda claro que los aportes de fertilizantes nitrogenados por encima de la dosis que proporciona la máxima producción, quedan en el suelo expuestos a ser arrastrados a las capas inferiores y de allí a la napa freática. Además, si estos aportes no son absorbidos por el cultivo en un plazo relativamente breve tras su aplicación, permanecen en el suelo sin que el ciclo del nitrógeno tenga capacidad para reciclarlos en cantidades tan elevadas, y podrán salir del ciclo mediante el lavado a través del suelo. Por otra parte, si existe un factor limitante adicional, por ejemplo el agua (en el caso de los secanos áridos ó semiáridos), es muy posible que el cultivo no llegue a extraer todo el nitrógeno que tiene disponible, y que los excedentes pasen a capas inferiores del suelo, alcanzando la napa freática, si se produce un fuerte aporte de agua (Orús, Quílez y Beltrán, 2000).

Paralelamente, la ganadería actual ha concentrado la producción de residuos orgánicos en torno a sus predios. Si los distribuye en superficies pequeñas puede producir también excedentes a partir de residuos orgánicos de mineralización más o menos rápida. A menudo el problema se incrementa por no considerar el aporte nitrogenado que procede de la materia orgánica, y no descontarlo de la fertilización química que se practica en esas superficies. También se debe considerar los aportes cada vez más usuales procedentes de fuentes como el agua de riego, que pueden percolar y dar origen a aguas
de drenaje cargadas de nitratos; la lluvia en zonas con atmósfera contaminada; aportes de sustancias residuales de orígenes diversos, etc.

Por su parte, el crecimiento de núcleos de población y sus actividades industriales introduce cantidades importantes de nitrógeno en la atmósfera y el agua. Como consecuencia, las cantidades de nitrógeno mineral disponibles en el suelo son habitualmente mucho más altas que en condiciones naturales y, por consiguiente, las posibilidades de “escape” desde el suelo son mayores, pudiendo originar contaminación (Orús, Quílez y Beltrán, 2000).

Este tipo de contaminación sitúa cantidades anómalas de nitrógeno en aguas freáticas y superficiales. En las aguas freáticas que son utilizadas para consumo humano, los altos contenidos de nitratos significan riesgos para la salud, y en las aguas superficiales su presencia hace proliferar la biomasa de algas y pequeños organismos que consumen todo el oxígeno, originando el fenómeno denominado “eutrofización de las aguas” (CONAMA, 2002).

Efectos sobre la salud

El nitrato de por sí no es tóxico para los humanos. Sin embargo, el nitrato ingerido en alimentos o aguas ricas en estas formas de nitrógeno es reducido a nitrito en el sistema digestivo de algunos animales, especialmente en rumiantes, y de humanos (Perdomo et al., 1999). Los nitratos se transforman en nitritos por la flora bacteriana del estómago, que al combinarse con las proteínas del cuerpo forman la nitrosamina, uno de los mecanismos a los que se les atribuye la generación de cáncer (CONAMA, 2002).

En experiencias de laboratorio se ha comprobado que alrededor del 75% de las nitrosaminas pueden originar cánceres hepáticos y, aunque con menor frecuencia, de pulmón, estómago, riñón, esófago y páncreas. Asimismo se ha podido comprobar una correlación directa entre el consumo de alimentos o aguas con exceso de nitratos y los cánceres gástricos, y entre el trabajo en las fábricas de abonos químicos y dichos cánceres (Centro Rural de Información Técnica, España, 2002). Tchernitchin advirtió que “esto no es un proceso inmediato, consumir una o dos veces nitratos o nitritos no produce ningún efecto, pero al ingerirlos sostenidamente en el tiempo, por supuesto que aumenta el riesgo”. Este autor señala que, después de Japón, Chile es el país con más altos índices de cáncer gástrico en el mundo. Por lo tanto, se podría establecer una correlación entre las zonas contaminadas con estos compuestos derivados del nitrógeno y las áreas del país que registran más casos (CONAMA, 2002).

En EE.UU., la mayoría de los casos de toxicidad por nitrato se ha producido por consumo de agua de pozo con contenidos elevados de este elemento. Debido a dicho riesgo, actualmente los organismos de salud pública de EE.UU., la ONU y muchos países, dentro de ellos Chile, han adoptado como estándar una concentración de nitratos en el agua de 10 mg/l, por encima del cual no sería adecuada para el consumo humano. El nivel crítico de nitratos en agua para animales (caballos, vacunos, etc.) se ha establecido en 100 mg/l (Agencia de Protección Ambiental de los Estados Unidos, 2002; citado por Orús, Quílez y Beltrán, 2000).

En adultos, el estómago y la primera parte del intestino delgado son prácticamente estériles debido al bajo pH, donde el nitrato se absorbe antes de ser reducido a nitrito. Sin embargo, en los lactantes el pH del estómago es más básico y permite el desarrollo de una microflora más abundante, capaz de reducir el nitrato a nitrito. Eso explica la mayor sensibilidad de los niños al nitrato. Luego el nitrito
es absorbido y transportado a la corriente sanguínea, donde oxida al Fe$_{2+}$ de la hemoglobina, a Fe$_{3+}$, formando así metahemoglobina, la cual no puede transportar oxígeno. La falta de oxígeno cambia la coloración de la piel, por lo cual la enfermedad también es conocida con el nombre de “bebé azul”. Los síntomas clínicos (coloración azul) se producen cuando el 10% de la hemoglobina pasa a metahemoglobina, y los efectos letales ocurren luego de que el 50% ó más de la hemoglobina es transformada. En contraste con la situación de los humanos, los rumiantes, especialmente las vacas, son más susceptibles a la intoxicación con nitrato, porque estos mamíferos tienen una importante microflora en el rumen, particularmente hábil para reducir el nitrato a nitrito (Ongley, 1997, y Centro Rural de Información Técnica, España, 2002).

7.2. NITRÓGENO Y SU CICLO

El balance de las formas asimilables de nitrógeno para las plantas en la solución del suelo es el resultado dinámico de una serie de reacciones que se producen continuamente. De ellas resulta un constante movimiento de entradas y salidas de nitrógeno asimilable (FAO, 1986). En la figura 22 se muestra el ciclo del nitrógeno en el suelo.

![Figura 22. Ciclo del nitrógeno en el suelo.](image)

El proceso general de mineralización de la materia orgánica se realiza lentamente por la acción enzimática de los microorganismos, que van fraccionando poco a poco las unidades moleculares complejas en unidades cada vez más simples, hasta llegar a la producción final de ácidos orgánicos, anhídrido carbónico y el ion amonio (NH₄⁺), por lo cual se conoce esta fase como amonificación. Participan activamente todo tipo de bacterias heterótrofas y otros microorganismos saprófitos que utilizan la energía química de la materia orgánica para sus procesos vitales, obteniendo nitrógeno mineral como subproducto del metabolismo microbiano (FAO, 1986).

Una fase complementaria de la mineralización, que se realiza por organismos autótrofos específicos, es la nitrificación. La reacción, inversa a la reducción que luego ocurre en la planta, se desarrolla en dos etapas; la primera:

\[
2\text{NH}_4^+ + 3\text{O}_2 \rightarrow 2\text{NO}_2^- + 2\text{H}_2\text{O} + 4\text{H}^+
\]

Esta etapa es desarrollada por las bacterias de los géneros nitrosomonas, nitrosolobus y nitrosospira, que toleran altos contenidos de ion amonio y obtienen energía en la oxidación del amonio al ion nitroso.

La segunda etapa es realizada por bacterias del género nitrobacter, que convierten el nitrito en nitrato (Domínguez, 1989):

\[
2\text{NO}_2^- + \text{O}_2 \rightarrow 2\text{NO}_3^-
\]

La nitrificación tiene lugar con rapidez en la mayoría de los suelos, constituyendo el nitrato la fuente de nitrógeno más importante para la mayoría de las plantas, donde las enzimas nitrato-reductasas lo convierten en amonio, que es utilizado en la síntesis de aminoácidos y proteínas. El suelo no retiene fácilmente el nitrato, sino que es transportado por el frente acuoso en un proceso de lixiviación, de modo que si la pluviosidad es alta y el suelo muy permeable, puede ser arrastrado a profundidades inalcanzables para las raíces. En climas mediterráneos, las lluvias invernales son capaces de lavar los nitratos, provocando una pérdida cercana al 50% del total disponible (Rodríguez; García; 1985).

La mineralización del nitrógeno de la materia orgánica se lleva a cabo simultáneamente con la fijación o inmovilización del mismo por los microorganismos. En consecuencia, al tiempo que se mineraliza el nitrógeno, es reutilizado por los microorganismos. La mineralización media de la materia orgánica estable se realiza a una tasa que oscila entre el 0,5 y el 2% del nitrógeno anual (Domínguez, 1989).

El nitrógeno atmosférico es utilizado directamente por una serie de microorganismos que tienen la propiedad de reducirlo y, de esta forma, integrarlo, ya sea en forma mineral u orgánica, en el balance total del nitrógeno del suelo. La fijación del nitrógeno es la etapa reguladora del ciclo, en la cual el nitrógeno atmosférico pasa a forma combinada, compensando así las pérdidas de éste por denitrificación (conversión del nitrato en nitrógeno gaseoso o en óxidos de nitrógeno, gases que pasan a la atmósfera) y volatilización del amonio (desde el suelo a la atmósfera).

La denitrificación es un proceso biológico a través del cual el nitrógeno, generalmente en la forma de NO₃⁻, es devuelto a la atmósfera desde el suelo, en forma de nitrógeno gaseoso (N₂) y óxido nitroso (N₂O). Los requerimientos para que este proceso ocurra son los siguientes:
1) Condiciones de restricción de disponibilidad de O₂ (saturación de suelos).
2) Abundancia de nitratos.
3) Condiciones de temperatura de suelo más altas (buena actividad biológica).

El proceso se resume como sigue:

$$\text{NO}_3^- \rightarrow \text{NO}_2^- + \text{O}_2 \text{ (consumido)} \rightarrow \text{NO} \rightarrow \text{N}_2\text{O} \rightarrow \text{N}_2$$

En suelos saturados, con baja presencia de O₂, los microorganismos convierten el nitrato en nitrito, consumiendo el O₂.

7.3. REMOCIÓN DE NITRÓGENO Y BIOFILTROS

El nitrógeno contenido en las aguas de escurrimiento superficial, el que principalmente está constituido por nitratos, puede ser retenido por la estructura mediante dos mecanismos. El primero, a través de la absorción producida por la vegetación que forma el biofiltro y que aparece como el más importante. Sin embargo, normalmente el nitrógeno absorbido por la estrata herbácea y leñosa es reciclado dentro del mismo sistema, y por lo tanto su contribución al balance final es menor. Indudablemente, en aquellos biofiltros donde la estrata herbácea es cosechada y exportada a otro sitio, la extracción por las plantas jugará un rol de mayor importancia.

Ahora bien, la mayor parte del nitrógeno que proviene de la actividad agrícola alcanza las aguas subsuperficiales a través de las aguas superficiales, y se considera que el proceso más relevante mediante el cual se elimina nitrógeno en un biofiltro es la denitrificación (Lowrance et al., 1995).

Ambos mecanismos, absorción por las plantas y denitrificación, parecen actuar combinados. El requisito fundamental para que el nitrato sea removido es que el agua subsuperficial atraviese una zona con actividad radicular. En ella el nitrógeno es retirado mediante absorción o, en forma más importante, las raíces y la actividad radicular aportan carbono y energía para las bacterias que transforman nitratos a nitrógeno gaseoso, el cual escapa a la atmósfera. Este proceso ocurre fundamentalmente donde existe una abundante fuente de carbono y una escasa abundancia de oxígeno, es decir, en zonas saturadas o excesivamente húmedas del subsuelo.

Quizás por lo mismo, la información disponible en evaluaciones de eficiencia de remoción es variada y heterogénea. Un aspecto común entre la literatura revisada indica que la efectividad en la remoción de nitrógeno es variable, y depende de las condiciones hidrológicas, el tipo de suelo y las características biogeocquímicas del sitio. Estas características parecen ser más relevantes que la selección de las especies a utilizar o el ancho del biofiltro (Mayer et al., 2006).

De hecho, el último autor mencionado, luego de una extensa revisión bibliográfica, concluye que la remoción de nitrógeno en aguas subsuperficiales se ha demostrado muy eficiente, aunque no se relaciona con el ancho del biofiltro. La remoción de nitrógeno en las aguas superficiales se encontró más relacionada al ancho de biofiltro, pero la eficiencia de remoción es bastante más baja. Se puede dar la paradoja de que biofiltros muy angostos incluso pueden aumentar la concentración de nitrógeno en aguas superficiales, aunque aquellos de ancho superior a los 50 m fueron bastante eficientes en
el control de este nutriente. Finalmente, el autor concluye que el tipo de vegetación no influye en la efectividad de remoción de nitrógeno, como nitrato, desde aguas superficiales, aunque sí es relevante en aguas sub superficiales.

Efecto de los biofiltros en la reducción de nitratos del agua de riego y lluvias
Durante las temporadas de riego 2004, 2005, y 2006, además de los períodos invernales correspondientes, se tomaron muestras de agua de riego y escurrimiento de aguas lluvia, de acuerdo al protocolo de muestreo. Además, cuando fue posible, se muestreó agua subsuperficial en pozos de observación ubicados en el pie del potrero, a un metro de profundidad, a la salida de cada uno de los biofiltros.

- Nitratos en agua superficial de escorrentía, en las temporadas de riego
En el cuadro 24, se presenta la concentración de nitratos en el agua de regadío que ingresa al potrero, como promedio de tres temporadas. Los mismos antecedentes se entregan respecto del agua que accede al sector de biofiltro luego de escurrir por el área de cultivo.

<table>
<thead>
<tr>
<th>Módulos</th>
<th>Nitratos en agua al ingreso del potrero (mg/l)</th>
<th>Nitratos en el agua al ingreso del área de biofiltro</th>
<th>Tasa de cambio (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pichidegua</td>
<td>5,5</td>
<td>9,9</td>
<td>79,4</td>
</tr>
<tr>
<td>Chimbarongo</td>
<td>11,5</td>
<td>13,4</td>
<td>16,9</td>
</tr>
<tr>
<td>Requínoa</td>
<td>1,1</td>
<td>2,5</td>
<td>117,7</td>
</tr>
<tr>
<td>San Fernando</td>
<td>3,1</td>
<td>11,7</td>
<td>283,3</td>
</tr>
<tr>
<td>Teno</td>
<td>0,7</td>
<td>1,5</td>
<td>111,6</td>
</tr>
<tr>
<td>Molina</td>
<td>2,7</td>
<td>2,6</td>
<td>-3,8</td>
</tr>
<tr>
<td>S. Familia</td>
<td>3,7</td>
<td>10,2</td>
<td>173,9</td>
</tr>
<tr>
<td>Curicó</td>
<td>2,9</td>
<td>12,8</td>
<td>343,8</td>
</tr>
<tr>
<td>Promedio</td>
<td>3,9</td>
<td>8,1</td>
<td>107,1</td>
</tr>
</tbody>
</table>

En el cuadro 24 se aprecia que la carga de nitratos en aguas superficiales es relativamente baja. La excepción es el módulo de Chimbarongo, donde se observa valores superiores a 11 mg/l. En promedio de todos los módulos, el contenido de nitratos en aguas superficiales al ingreso al predio durante las tres temporadas de riego fue de 3,9 mg/l, mientras que la concentración observada a la entrada de los biofiltros fue de 8,1 mg/l, lo que significa un incremento del 107,1%. Esto se explica por el movimiento de nitratos hacia la zona de biofiltros en las aguas que abandonan el potrero o predio producto del riego. En definitiva, la concentración de nitratos aumenta en la medida que el agua de riego avanza en el potrero y se enriquece con los fertilizantes nitrogenados minerales aplicados a los cultivos.

En el cuadro 25 se muestra la concentración de nitratos a la entrada y salida de los biofiltros en agua superficial, en tres temporadas de riego, así como la eficiencia de éstos en su remoción.
Cuadro 25. Concentración de nitratos (mg/l) a la entrada y salida de los biofiltros, así como la eficiencia en su remoción (%). Promedio de tres temporadas de riego.

Módulos	Concentración de nitratos (mg/l) al ingreso del área de biofiltro	Concentración de nitratos (mg/l) en el agua de riego a la salida del BF1 (%)	Concentración de nitratos (mg/l) en el agua de riego a la salida del BF2 (%)	Eficiencia promedio en la remoción de nitratos (%)
Pichidegua	13,0 11,7 5,0 12,5 12,4 6,0 17,1 14,3 6,4 3,8	0,0 0,0 0,0 0,0 0,0 0,0	1,3 0,0	2004/05 2005/06 2006/07 BF1 BF2
Chimbarongo	18,7 6,1 15,4 10,5 6,8 13,8 23,5 9,9 13,6 44,0	0,0	11,6	0,0 0,0 0,0 0,0 0,0
Requínoa	3,2 2,2 2,0 1,2 1,7 2,7 1,9 1,8 3,1 61,3	200,0	0,0	0,0 0,0 0,0 0,0 0,0
San Fernando	5,9 17,8 11,5 3,4 8,8 8,4 6,6 19,3 10,0	41,1	50,2 27,0	0,0
Teno	2,0 0,9 1,6 1,2 0,7 2,5 1,1 0,9 3,6 41,8	227,0	0,0	0,0 0,0 0,0
Molina	0,5 3,0 4,1 0,5 1,0 4,2 0,5 2,5 5,0	0,0	68,3 0,0	0,0
S. Família	17,4 8,2 5,0 15,2 8,0 3,4 15,7 7,1 5,4 12,4	3,3 32,3	9,9 13,9	0,0
Curicó	24,6 - 1,1 33,1 - 1,8 24,4 - 0,5	0,0	0,0 0,0	0,0
Promedio	10,6 7,1 5,7 9,7 5,6 5,3 11,4 6,7 6,0 25,5	20,6 8,9	12,2 19,3	3,1 18,3 10,7

<table>
<thead>
<tr>
<th>Módulos</th>
<th>Concentración de nitratos (mg/l) al ingreso del área de biofiltro</th>
<th>Concentración de nitratos (mg/l) en el agua de riego a la salida del BF1 (%)</th>
<th>Concentración de nitratos (mg/l) en el agua de riego a la salida del BF2 (%)</th>
<th>Eficiencia en la remoción de nitratos del BF1 (%)</th>
<th>Eficiencia en la remoción de nitratos del BF2 (%)</th>
<th>Eficiencia promedio en la remoción de nitratos (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pichidegua</td>
<td>13,8 4,3 1,2 1,1 1,9 91,1 1,9 92,1</td>
<td>55,9 33,8 65,9</td>
<td>41,5 48,9</td>
<td>2005 2006 2005 2006 2005 2006 BF1 BF2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chimbarongo</td>
<td>2,3 4,2 2,9 0,7 1,5 1,4</td>
<td>0,0 83,0</td>
<td>33,8 65,9</td>
<td>41,5 48,9</td>
<td>2005 2006 2005 2006 BF1 BF2</td>
<td></td>
</tr>
<tr>
<td>Requínoa</td>
<td>0,8 - 1,9 - 0,8 - 0,0</td>
<td>0,0 0,0</td>
<td>9,9 0,0</td>
<td>0,0 0,0</td>
<td>2005 2006 2005 2006 BF1 BF2</td>
<td></td>
</tr>
<tr>
<td>San Fernando</td>
<td>1,6 1,3 6,3 4,1 2,0 1,2</td>
<td>0,0 0,0</td>
<td>0,0 10,9</td>
<td>0,0 0,0</td>
<td>2005 2006 2005 2006 BF1 BF2</td>
<td></td>
</tr>
<tr>
<td>Teno</td>
<td>0,6 5,0 0,5 1,0 0,6</td>
<td>15,0 90,5</td>
<td>0,0 88,5</td>
<td>52,8 44,2</td>
<td>2005 2006 2005 2006 BF1 BF2</td>
<td></td>
</tr>
<tr>
<td>Molina</td>
<td>0,9 4,4 0,7 2,0 1,1 1,7</td>
<td>26,1 55,9</td>
<td>0,0 41,0</td>
<td>0,0 0,0</td>
<td>2005 2006 2005 2006 BF1 BF2</td>
<td></td>
</tr>
<tr>
<td>S. Família</td>
<td>0,8 0,7 4,2 0,6 0,7 0,7</td>
<td>0,0 17,5</td>
<td>15,0 0,0</td>
<td>8,8 7,5</td>
<td>2005 2006 2005 2006 BF1 BF2</td>
<td></td>
</tr>
<tr>
<td>Curicó</td>
<td>2,7 1,4 1,4 1,7 1,5 1,0</td>
<td>48,7 0,0</td>
<td>46,5 29,8</td>
<td>24,4 38,2</td>
<td>2005 2006 2005 2006 BF1 BF2</td>
<td></td>
</tr>
<tr>
<td>Promedio</td>
<td>2,9 3,1 2,4 1,6 1,2 2,0</td>
<td>22,6 35,3</td>
<td>24,7 35,9</td>
<td>32,4 28,6</td>
<td>2005 2006 2005 2006 BF1 BF2</td>
<td></td>
</tr>
</tbody>
</table>
Al contrastar la concentración de nitratos en el agua de riego a la entrada y salida del área de biofiltros, es posible estimar la eficiencia promedio en la reducción de NO₃. Se aprecia que ésta alcanzó a 18,3% en BF₁ y 10,7% en BF₂, lo que se considera bajo para la remoción de los nitratos del agua superficial. Datos de literatura reportan, para biofiltros de 4,6 y 9,1 m de ancho en cultivos de maíz, reducciones de nitrato en el agua de escurrimiento superficial de 27% y 57% respectivamente (Dillaha et al., 1988, 1989). Similarmente, Magette et al., 1989, y Schmitt et al., 1999, reportaron que biofiltros de praderas de un ancho inferior a 5 m fueron ineffectivos para controlar nitrato en las aguas de escurrimiento superficial, mientras que aquellos mayores a 5 m de ancho e inferiores a 10 m tuvieron eficiencias entre el 29 y el 65%.

Nitratos en aguas de escorrentía superficial invernal

El cuadro 26 presenta la concentración de nitratos en el agua al ingreso y salida del área de biofiltros durante la época de invierno, así como la eficiencia de éstos en su remoción.

Se puede señalar que la concentración de NO₃ en el agua de escurrimiento superficial proveniente de las lluvias alcanzó en promedio a 2,9 mg/l, mientras que, en promedio, a la salida de los biofiltros ésta se redujo a 2,0 y 1,5 mg/l, en BF₁ y BF₂, respectivamente.

Al contrastar la concentración de nitratos al ingreso y salida del área de biofiltros, es posible estimar la eficiencia en su remoción desde aguas de escorrentía invernal. El promedio se ubica en torno al 32% para BF₁ y 29% para BF₂, valores considerados de eficiencia media, aunque ligeramente superiores a los logrados durante la temporada de riego en ambos tipos de biofiltros.

Nitratos en agua subsuperficial durante invierno

Los nitratos en el agua subsuperficial, a un metro de profundidad, solamente fueron determinados en las temporadas de invierno, ya que en la primavera–verano no resultó posible encontrar agua suficiente para esta analítica. El cuadro 27 muestra que el tratamiento “testigo” alcanzó un nivel promedio de 49,8 mg/l, con una fluctuación de 119,2 a 2,21 mg/l, mientras que después del BF₁ y BF₂ el nivel disminuye a sólo 4,9 y 14,9 mg/l, respectivamente.

A partir de este análisis se puede estimar que los mayores efectos de los biofiltros se producen sobre el agua subsuperficial, puesto que la eficiencia a nivel del agua superficial es bastante menor. Otro aspecto importante es que las concentraciones de nitratos encontrados a nivel del agua subsuperficial (49,8 mg/l, en el testigo) exceden largamente los valores promedio hallados en el agua de riego al ingreso a los biofiltros (3,9 mg/l en la temporada de primavera–verano y 2,9 mg/l en el invierno), lo que estaría indicando que este contaminante es arrastrado en profundidad, dentro del perfil de suelo, por las precipitaciones invernales, que se constituyen en una importante fuerza conductorra durante invierno.

A continuación se presenta la concentración de nitratos en el agua subsuperficial en el testigo, sin biofiltros, así como a la salida de BF₁ y BF₂. Al contrastar estas cargas de nitratos, es posible estimar la eficiencia de los biofiltros en la remoción del contaminante en el agua subsuperficial, a un metro de profundidad.
Cuadro 27. Concentración de NO₃ (mg/l) en agua subsuperficial en el testigo y a la salida de los biofiltros, y eficiencia en la remoción de éstos. Temporada de invierno 2005.

<table>
<thead>
<tr>
<th>Módulos</th>
<th>Nitratos (mg/l) en el testigo</th>
<th>Nitratos (mg/l) a la salida de BF1</th>
<th>Nitratos (mg/l) a la salida de BF2</th>
<th>Eficiencia en la remoción de nitratos del BF1 (%)</th>
<th>Eficiencia en la remoción de nitratos del BF2 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pichidegua</td>
<td>119,23</td>
<td>0,42</td>
<td>0,82</td>
<td>99,6</td>
<td>99,3</td>
</tr>
<tr>
<td>Chimbarongo</td>
<td>83,03</td>
<td>-</td>
<td>6,16</td>
<td>-</td>
<td>92,6</td>
</tr>
<tr>
<td>Requínoa</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>San Fernando</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Teno</td>
<td>54,97</td>
<td>2,08</td>
<td>53,5</td>
<td>96,2</td>
<td>2,7</td>
</tr>
<tr>
<td>Molina</td>
<td>2,21</td>
<td>1,13</td>
<td>3,32</td>
<td>48,9</td>
<td>0,0</td>
</tr>
<tr>
<td>S. Familia</td>
<td>30,31</td>
<td>19,08</td>
<td>24,51</td>
<td>37,1</td>
<td>19,1</td>
</tr>
<tr>
<td>Curicó</td>
<td>9,24</td>
<td>1,69</td>
<td>0,95</td>
<td>81,7</td>
<td>89,7</td>
</tr>
<tr>
<td>Promedio</td>
<td>49,8</td>
<td>4,88</td>
<td>14,88</td>
<td>72,7</td>
<td>50,6</td>
</tr>
</tbody>
</table>

Nota: las temporadas 2006 y 2007 no se analizan debido a ausencia de agua en profundidad para los muestreos correspondientes.

La mayor eficiencia en la remoción de los nitratos del agua subsuperficial se aprecia en BF₁, con un 72,7%, mientras que el BF₂ alcanza sólo un 50,6%. El mayor efecto de BF₁ en la reducción de dichos contaminantes se puede explicar por el hecho de que este biofiltro está conformado por praderas y una estrata arbórea. Ello genera un volumen más grande de raíces, las que hacen posible una extracción en profundidad en mayor grado que BF₂, estructurado con praderas de arraigamiento superficial.

La eficiencia en la reducción de los nitratos del agua subsuperficial es alta tanto en el BF₁ como en el BF₂. Supera largamente a la observada a nivel del agua superficial, que como se comentó anteriormente no superó el 25% en promedio, siendo probablemente éste uno de los efectos de mayor interés del estudio. Clausen et al., 2000, reportan reducciones de las concentraciones de nitrato en las aguas subsuperficiales de un 35%, usando biofiltros con festuca en un predio con cultivo de maíz. Similarmente, estudios en Italia reportan disminuciones superiores al 90% mediante biofiltros de 6 m de ancho, con 5 m de pasto y 1 m de árboles (Borin y Bigon, 2002).

7.4. CONCLUSIONES

- Los nitratos son arrastrados en los sucesivos eventos de riego desde la zona de entrada de agua al potrero hacia la zona de salida o zona de biofiltros. Se registraron incrementos promedio en la concentración de nitratos, en esta última zona, del orden de 107%.
- La eficiencia en la reducción de nitratos del agua superficial en temporada de riego fue baja, del orden de 18,3% en BF₁ y 10,7% en BF₂.
- El movimiento de nitratos en profundidad, arrastrados por las precipitaciones invernales, parece ser de mayor importancia que durante la temporada de riego.
- La mayor eficiencia de las asociaciones vegetales se produce en invierno, en el agua subsuperficial, con niveles de 72% para BF₁ y 51% para BF₂, lo que se explicaría por el mayor volumen de raíces de un sistema que considera pasto, arbustos y árboles, en relación a un biofiltro conformado sólo por una pradera de arraigamiento superficial.
BIBLIOGRAFÍA CONSULTADA

http://www.forestry.iastate.edu/.../buffer1.gif
http://www.soil.ncsu.edu/publications/BMPs/buffers.html
8. BIOFILTROS Y SU EFICIENCIA EN LA REMOCIÓN DE FÓSFORO DISUELT0
Jaime Mejías Bassaletti

Introducción
El rápido crecimiento y la intensificación de la producción agropecuaria han producido una acumulación excesiva de fósforo (P) en los suelos, más allá de los requerimientos de los cultivos. Este hecho reviste una amenaza desde el punto de vista medioambiental, porque el P es un elemento limitante en las aguas. Lo anterior implica que bajas concentraciones provenientes de suelos muy fertilizados con dicho elemento pueden presentar un excesivo crecimiento de algas. La degradación de la biomasa de algas demanda grandes cantidades de oxígeno, que es extraído desde el ambiente acuático afectando la vida de peces y otros organismos. El fenómeno, conocido como eutrofización, es prácticamente irreversible. Por lo tanto, el manejo adecuado del P en sistemas agropecuarios es un tema crítico que debe ser abordado en forma oportuna. En consecuencia, el control de la eutrofización de las aguas dulces requiere, principalmente, de la reducción de la pérdida del P que las contaminan.

Las fuentes “puntuales” de contaminación han sido reducidas de manera significativa debido a la facilidad con que es posible identificarlas, a la aplicación de normativas ambientales y a avances en la tecnología para controlar las emisiones de P a partir de dichas fuentes (Pote y Daniel, 2000). Sin embargo, la contaminación difusa es uno de los problemas más complejos de abordar desde el punto de vista ambiental, pues la fuente de origen de los contaminantes es difícil de determinar y, por ende, las normas de control y manejo no se pueden focalizar de un modo adecuado.

Un control exitoso de la contaminación difusa debe dirigirse hacia la disponibilidad de los contaminantes en el suelo (fuentes de origen), como también a la hidrología del sitio, la cual determina el movimiento de contaminantes desde su fuente hacia los cuerpos de agua (transporte). El tipo de contaminante define en buena medida el énfasis que se dé a uno u otro factor, en lo que se refiere a las medidas de manejo (McDowell et al., 2002).

8.1. FÓSFORO COMO NUTRIENTE
El fósforo (P) es un elemento esencial para el crecimiento y desarrollo de los organismos biológicos, razón por la cual se aplica comúnmente al suelo para asegurar un óptimo rendimiento de los cultivos. Una parte es fijada por los componentes minerales del suelo y luego liberada a la solución en forma gradual, para posteriormente ser absorbido por los cultivos. Otra fracción del P aplicado al suelo es utilizada por los microorganismos y, así, inmovilizado por un periodo de tiempo hasta que ellos mueren y el elemento queda disponible para ser utilizado por las plantas. Los cultivos pierden parte de sus tejidos, los que se integran a la materia orgánica del suelo, que es mineralizada mediante procesos de oxidación. El fósforo contenido en estos complejos orgánicos queda disponible nuevamente. Sin embargo, el P puede ser exportado desde el sistema suelo a través de procesos de escurrimiento superficial, lixiviación, y erosión, entre otros. La figura 23 presenta su ciclo.
De acuerdo a Stumm y Sigg (1979), el P es fuertemente inmovilizado en los suelos por medio de reacciones de intercambio de ligandos con los grupos hidroxilos en la superficie de óxidos de hierro y de aluminio (figura 24). Por ello, en la mayoría de los suelos se aplica fósforo en cantidades considerables para asegurar su disponibilidad en la solución suelo y ser finalmente absorbido por la acción radicular de las plantas. Su limitada disponibilidad en el suelo ha sido corregida en el largo plazo a través del uso masivo de fertilizantes fosfatados y, circunstancialmente, mediante la aplicación de enmiendas orgánicas.
La figura 25 presenta los flujos de fósforo en un sistema agropecuario. Las entradas están constituidas principalmente por la aplicación de fertilizantes fosfatados. Los alimentos ricos en P que son ingeridos por los animales ingresan al sistema suelo por medio de las fecas o indirectamente por la aplicación de purines o estiércol sobre cultivos o praderas.

Figura 25. Principales componentes del balance de P en sistemas agropecuarios y sus flujos de entradas, salidas y pérdidas.

Las salidas del sistema están claramente identificadas por vía de la extracción que realizan los cultivos desde el suelo, los cuales posteriormente son cosechados. Los productos animales, tales como leche o carne, que son generados en el sistema y luego exportados, constituyen también importantes salidas a ser consideradas en un balance de P (Sharpley et al., 1999). Las pérdidas del elemento se producen principalmente a través de P adsorbido en partículas de suelo o en complejos orgánicos que abandonan el sistema producto de la erosión hídrica. El fósforo disuelto en escorrentía superficial es otro mecanismo mediante el cual se pierde desde el suelo. Las pérdidas vía lixiviación se producen sobre todo en aquellos suelos ricos en P donde ocurren procesos de desorción y el P disuelto mediante transporte facilitado por coloides es llevado hacia el subsuelo, alcanzando las aguas subterráneas (Haygarth y Jarvis, 1999).

La figura 26 representa un diagrama de las posibles fuentes de P en sistemas agropecuarios intensivos mixtos, y las formas mediante las cuales este elemento alcanza las aguas subterráneas y superficiales.
A pesar de que el P es fijado fuertemente por los suelos, puede ser exportado desde el sistema por los mecanismos descritos anteriormente y llegar a los cuerpos de agua. La situación indicada se abordada mediante normas de manejo, que contemplan el uso de biofiltros. Estos sistemas forman una barrera física entre el área de cultivos y los cuerpos de agua. La velocidad de la escorrentía superficial del agua, ya sea proveniente del riego o de la precipitación, se ve reducida, y se captura los sedimentos y partículas orgánicas. Adicionalmente, se promueve la infiltración y aumenta la absorción de nutrientes por las plantas.

8.2. EVALUACIÓN DE BIOFILTROS PARA EL CONTROL DE P EN CHILE

Siguiendo el mismo procedimiento de las demás variables estudiadas, es decir, a partir de muestras de agua de riego, se analizó el contenido de P soluble al ingreso del potrero (agua predial) antes de ingresar al área de biofiltros y después de pasar por ésta. El P soluble fue determinado en las muestras colectadas de acuerdo a la metodología 4500-P C (APHA et al., 1998).

Los resultados que se presentan a continuación corresponden a un promedio de las mediciones realizadas en las temporadas 2004/05; 2005/06 y 2006/07, durante la época de riego en los ocho módulos descritos en capítulos anteriores.

La figura 27 muestra los contenidos de P soluble medidos en el agua predial y en el agua de riego antes de entrar a la zona de biofiltros. Se puede observar que en el módulo de Curicó y en el de Pichidegua, el contenido de fósforo disuelto en el agua de riego que ingresa a la zona de biofiltros disminuyó en comparación al del agua que ingresa al potrero. Por el contrario, en el resto de los módulos el P disuelto en el agua de riego aumentó, o al menos se mantuvo igual al del agua del predio. El aumento más notable se produjo en los módulos de Molina y Sagrada Familia.
El enriquecimiento del agua predial con P durante su tránsito a través del área de cultivos puede deberse a diversos factores. Por ejemplo, un excesivo nivel del elemento en el suelo, que se libera mediante procesos de desorción al momento en que el agua de menor concentración entra en contacto con zonas de suelo con altos niveles de saturación de P. El aumento de fósforo en solución puede también deberse a la disolución de fertilizantes fosfatados que han sido aplicados muy cerca de la época de riego, los cuales son muy solubles y fácilmente transportados.

Por otro lado, la disminución de P en solución, solamente observada en dos módulos, durante el transporte del agua de riego a través del área de cultivos, puede ser atribuida a procesos de adsorción y absorción radicular.

Los valores más bajos en el agua predial fueron observados en el módulo de Teno (2,5 mg/l, aproximadamente), mientras que en el de Molina los valores de P disuelto superaron los 30 mg/l. Estas concentraciones son consideradas extremadamente elevadas si se considera que 0,05 mg/l de P disuelto es reportado como una concentración crítica para aguas superficiales en países desarrollados (Breeuwsma et al., 1995). De acuerdo a lo señalado, se demuestra claramente la necesidad de tomar medidas de control para el manejo adecuado del P en sistemas intensivos, justificando el desarrollo de metodologías de remediación basadas en sistemas como biofiltros, “wetlands”, entre otros.

En la figura 28 se ilustra el efecto del BF1 en la disminución del P disuelto del agua de riego. En la mayoría de los casos no se observa un efecto positivo del uso del biofiltro, con la excepción de los módulos de Molina y Sagrada Familia, donde se detectó una leve disminución de la concentración de P.
Uso de Biofiltros para mejorar la calidad del agua de riego

Figura 28. Cambios en el contenido de P soluble (mg/l) medido en el agua de riego al ingreso y salida del BF$_1$, en ocho módulos localizados en la zona central de Chile (promedio de tres temporadas agrícolas).

Una tendencia similar se obtuvo con el uso del BF$_2$. En ningún modulo se observó un efecto claro sobre el control de P disuelto, a excepción de las mismas localidades anteriores: Molina y Sagrada Familia (figura 29).

Figura 29. Cambio en el contenido de P soluble (mg/l) medido en el agua de riego al ingreso y salida del BF$_2$, en ocho módulos localizados en la zona central de Chile (promedio de tres temporadas agrícolas).

En el cuadro 28 se indican las eficiencias promedio de ambos sistemas de biofiltros para los ocho módulos. En las dos localidades donde hubo efectos positivos las eficiencias fueron aproximadamente de 17% para BF$_1$ y 27% para BF$_2$ (Molina), y 2,9% para BF$_1$ y 12,9% para BF$_2$ (Sagrada Familia). Numerosos estudios han reportado eficiencias en el control de P mediante biofiltros. Para el caso de fósforo total –que incluye el P coloidal, adsorbido en partículas de suelo, el P orgánico y el P disuelto– la eficiencia ha sido entre un 27% y 96% (Dillaha et al., 1989; Magette et al., 1989; Schmitt et al., 1999; Lee et al., 2000; y Uusi-Kamppa et al., 2000).
En el caso de P disuelto, Daniels y Gilliam (1996) encontraron que biofiltros vegetales similares a los utilizados en este estudio lograron eficiencias de retención de 20%. Este resultado es comparable a los reportados en el cuadro 28, para el módulo de Molina. Blanco-Canqui et al. (2004) reportaron eficiencias de un 36% para P particulado y un 37% para P soluble.

Cuadro 28. Eficiencia en la reducción del contenido de P soluble (mg/l) por el efecto de los biofiltros en ocho módulos localizados en la zona central de Chile (promedio de tres temporadas agrícolas).

<table>
<thead>
<tr>
<th>Módulo</th>
<th>Eficiencias (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BF1</td>
</tr>
<tr>
<td>Pichidegua</td>
<td>0,0</td>
</tr>
<tr>
<td>Chimbarongo</td>
<td>0,0</td>
</tr>
<tr>
<td>Requinoa</td>
<td>0,5</td>
</tr>
<tr>
<td>San Fernando</td>
<td>0,0</td>
</tr>
<tr>
<td>Teno</td>
<td>0,0</td>
</tr>
<tr>
<td>Molina</td>
<td>17,5</td>
</tr>
<tr>
<td>Sagrada Familia</td>
<td>2,9</td>
</tr>
<tr>
<td>Curicó</td>
<td>0,0</td>
</tr>
<tr>
<td>Promedio</td>
<td>2,6</td>
</tr>
</tbody>
</table>

En el cuadro se aprecia que el 75% de las eficiencias calculadas son iguales a cero. Claramente la remoción del fósforo disuelto en agua a través de biofiltros se puede considerar como muy baja, de manera coincidente con los reportes de literatura. Los promedios estimados son del orden de 2,6% en BF1 y 5,3% en BF2. Daniels y William (1996) señalan que la eficiencia en el control de fósforo soluble está más relacionada con procesos de infiltración que con la acción del biofiltro. Se estima que el principal mecanismo de remoción de fósforo es la retención de sólidos, donde este elemento normalmente se encuentra adsorbido.

Conclusiones

- En general, la eficiencia medida para el control de P soluble en agua de riego en los dos tipos de biofiltros fue baja, con promedios de 2,6% y 5,3%, para BF1 y BF2, respectivamente.
- Solamente el módulo de Molina presentó eficiencias similares a las reportadas en la literatura.

BIBLIOGRAFÍA CONSULTADA

BREEUWSMA, A.; REIJERINK, J. and SCHOUMANS, O. 1995. Impact of manure on accumula-

La contaminación ambiental constituye un grave problema de alcance mundial. Las actividades agrícolas pueden contribuir al deterioro de la calidad del agua mediante la descarga de varios materiales: sedimentos, plaguicidas, abonos animales, fertilizantes y otras fuentes de materia orgánica e inorgánica. Muchos de estos contaminantes llegan a los cursos superficiales y subterráneos como consecuencia de fenómenos muy generalizados de escorrentía y percolación y, por lo tanto, se conocen con el nombre de contaminación difusa. La identificación, cuantificación y supresión de la contaminación es más difícil en esos casos que cuando procede de fuentes puntuales o localizadas.

La erosión hídrica es un proceso natural de transporte de suelo por la acción del agua que escurre hacia sectores más bajos de una cuenca. Durante un evento de tormenta, la tasa de precipitación puede ser mayor que la tasa de infiltración del suelo, lo que origina escorrentía superficial y desencadena un proceso de erosión hídrica. Aceleran este proceso actividades agrícolas tales como sobrepastoreo, inadecuada labranza de suelos y destrucción de la cubierta vegetal.

La erosión hídrica es la combinación de tres procesos físicos: remoción, transporte y depositación. El suelo es removido por la energía del impacto de la gota de lluvia o por la fuerza de arrastre del agua, especialmente en sistemas de riego mal manejados, con aplicaciones de caudales erosivos. El transporte de suelo ocurre vía arrastre de partículas por el agua, mientras que la depositación se produce cuando la velocidad del agua disminuye y permite la decantación de las partículas que se encontraban suspendidas. La mayoría de las depositaciones ocurren sobre el suelo; sin embargo, parte de estos sedimentos pueden alcanzar fuentes de agua, afectándolas negativamente.

Los sedimentos provenientes de suelos de cultivo, praderas sobrepastoreadas y otras actividades, impactan los recursos hídricos. Reducen la capacidad de almacenaje en represas por embancamiento, destruyen el hábitat de peces, reducen el abastecimiento de agua de bebida, bajan el valor de propiedades, perjudican el uso recreacional del cuerpo de agua (pesca, natación) y dificultan la navegación. Además, producen en las aguas receptoras altos niveles de turbidez que limitan la penetración de la luz solar, lo que limita o impide el crecimiento de las algas y de las plantas acuáticas enraizadas. En los ríos, los lechos de grava están cubiertos por sedimentos finos que impiden o dificultan el desove de los peces. En ambos casos, el resultado es la perturbación del ecosistema acuático debido a la destrucción del hábitat. El estado hipertrófico (rico en nutrientes) de muchos lagos de aguas poco profundas daría lugar a un intenso crecimiento de las algas y plantas enraizadas, sin no fuera por el efecto limitador de la extinción de la luz debido a la fuerte turbidez. En este sentido, la turbidez puede ser “beneficiosa” en los lagos muy eutróficos, sin embargo la situación es perjudicial por razones estéticas y económicas, y se buscan alternativas para reducir la turbidez y los niveles de nutrientes.

En el aspecto químico, la contribución de los sedimentos a este tipo de contaminación se vincula con el tamaño de las partículas y el volumen del carbono orgánico asociado a ellos. La fracción químicamente activa de un sedimento es la que mide menos de 63 μm (limo y arcilla). En el caso del fósforo
(P) y metales el tamaño de las partículas es de importancia decisiva, debido a la gran superficie externa de las partículas muy pequeñas. El fósforo y los metales suelen tener fuerte atracción a los lugares de intercambio de iones, que están asociados con las partículas de arcilla y con los recubrimientos de hierro y manganeso que se dan normalmente en estas partículas pequeñas. Una gran cantidad de los contaminantes persistentes, bioacumulados y tóxicos, en especial los compuestos clorados incluidos en muchos plaguicidas, se asocian fuertemente con los sedimentos y sobre todo con el carbono orgánico transportado como parte de la carga de sedimentos de los ríos. La cuantificación del transporte de fósforo en América del Norte y Europa revela que hasta el 90% del flujo total de P de los ríos puede estar asociado con los sedimentos en suspensión.

Los productos químicos orgánicos vinculados con los sedimentos ingresan en la cadena alimentaria de diversas maneras. Son ingeridos directamente por los peces, y los sedimentos más finos (en particular la parte de carbono) constituyen el suministro alimentario de los organismos bentónicos que, a su vez, sirven de alimento para organismos superiores. En último término, los compuestos tóxicos se acumulan biológicamente en los peces y otros depredadores superiores. Así, los plaguicidas transportados desde la tierra como parte del proceso de escorrentía y erosión se concentran en los animales superiores, incluido el hombre.

Los aspectos generales del comportamiento y dinámica de los sedimentos, su impacto en cuerpos de agua y su entrada a la cadena trófica, expresan nítidamente la importancia de buscar alternativas de control del movimiento de estos contaminantes.

Para efectos de este estudio se determinaron los sólidos sedimentables y suspendidos contenidos en el agua de riego, los que se detallan a continuación.

Efecto de los biofiltros en el transporte y remoción de sólidos

- **Sólidos sedimentables**

Un aspecto importante es la variación del contenido de sólidos a lo largo del recorrido que realiza el agua en el surco de riego. En el cuadro 29 es posible apreciar que en todos los casos se verifica un arrastre de contaminantes desde la entrada de agua al potrero de cultivo hasta la entrada a la zona de biofiltros, excepto en Teno, donde se produce una depositación de sedimentos a medida que el agua avanza por el cultivo. Este módulo muestra un promedio de 49 mg/l a la entrada de agua al predio, carga que al llegar a la zona de biofiltros se reduce notoriamente, hasta 18,7 mg/l. La explicación se encuentra en la baja pendiente del sector y en la aplicación de caudales más controlados, o sea menos erosivos, que en los otros módulos.

También se observa en todos los módulos un efecto claro en la retención de sólidos sedimentables una vez que el agua cruza la barrera vegetal, tal como lo indican los valores de carga de sedimentos a la salida de BF₁ y BF₂. Incluso, al comparar las cargas de sedimentos que ingresan al predio con aquellas que salen, es posible constatar que en Molina y Teno se entregó un agua de riego de mejor calidad comparada con la que ingresó al potrero, ya que la carga de sedimentos a la salida fue muy inferior a la de entrada. Este aspecto es especialmente importante en el módulo de Molina, donde el agua de riego se mezcla con purines de cerdo. Allí, de 82 mg de sólidos sedimentables por litro al ingreso a potrero, la carga de este contaminante disminuye a sólo 28 mg/l luego de pasar por los biofiltros. Por cierto, de no existir estas barreras los sólidos irían a depositarse en acequias, canales o predios vecinos, provocando un impacto ambiental negativo.
El cuadro 29 asimismo devela la eficiencia de remoción de sólidos sedimentables lograda por los módulos en los tres años de observación, excepto en Curicó, que corresponde a datos de un año. Los de Chimbarongo, Pichidegua y Curicó presentaron eficiencias de remoción iguales o superiores a 70% como promedio de ambos tipos de biofiltros. En Sagrada Familia y Molina la eficiencia fue cercana a 60%, mientras que en Teno, San Fernando, y Requínoa presentaron eficiencias interesantes aunque de mayor variabilidad entre ambos tipos de biofiltros.

El rango de variación en los ocho módulos fue de 23 a 88% en BF1. En BF2 se registraron eficiencias entre 0 y 93%. El promedio general fue de 64,8% y 56,1% para BF1 y BF2, respectivamente.

Cuadro 29. Sólidos sedimentables (mg/l) al ingreso de potrero y en el área de biofiltros, y eficiencia de remoción (%). Promedio de tres temporadas.

<table>
<thead>
<tr>
<th>Módulo</th>
<th>Sólidos sedimentables (mg/l)</th>
<th>Eficiencia en la remoción de sólidos sedimentables (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ingreso al potro</td>
<td>Ingreso al área de BF</td>
</tr>
<tr>
<td>San Fernando</td>
<td>0,6</td>
<td>7,3</td>
</tr>
<tr>
<td>Chimbarongo</td>
<td>1,4</td>
<td>16,6</td>
</tr>
<tr>
<td>Pichidegua</td>
<td>1,6</td>
<td>7,0</td>
</tr>
<tr>
<td>Requínoa</td>
<td>0,8</td>
<td>2,6</td>
</tr>
<tr>
<td>S. Familia</td>
<td>0,6</td>
<td>5,6</td>
</tr>
<tr>
<td>Molina</td>
<td>46,3</td>
<td>82,3</td>
</tr>
<tr>
<td>Teno</td>
<td>49,4</td>
<td>18,7</td>
</tr>
<tr>
<td>Curicó</td>
<td>0,3</td>
<td>6,3</td>
</tr>
<tr>
<td>Promedio</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sólidos suspendidos

El comportamiento de los biofiltros en la remoción de sólidos suspendidos se muestra en el cuadro 30. Al igual que en el caso anterior, se confirma la tendencia al arrastre de sólidos hacia la zona de biofiltros, con un claro efecto positivo en la remoción del contaminante en todos los módulos. En el de Requínoa se produce depositación de sólidos suspendidos, ya que de 115 mg/l a la entrada a potro, la carga de contaminante disminuye a 44 mg/l antes de ingresar al biofiltro, aspecto que puede ser influenciado por la cobertura vegetal permanente entre las hileras del cultivo.

Los módulos de Chimbarongo, Pichidegua, Requínoa y Molina entregaron aguas de mejor calidad desde el punto de vista del contenido de sólidos suspendidos, ya que las cargas de sedimentos a la salida son considerablemente inferiores a las determinadas a la entrada de cada potro de cultivo. Este aspecto es de gran relevancia, pues se presenta en 4 de los 8 módulos en estudio, incluyendo los dos (Pichidegua y Molina) que disponen los purines de cerdo en el sistema de riego, como parte del tratamiento dado a dichos efluentes.

El mismo cuadro revela la eficiencia de remoción de sólidos suspendidos en los diferentes módulos, promedio de tres temporadas de estudio. Chimbarongo, Pichidegua y Molina alcanzaron altas eficiencias, entre 68 y 75%, lo que se considera muy satisfactorio por las características de estos predios. En efecto, Chimbarongo está sometido a continuos movimientos de suelo, por la orientación productiva
del predio a cultivos anuales y rotación con hortalizas, que en ocasiones significa obtener dos cultivos por temporada. Lo anterior predispone a un mayor movimiento de sedimentos, especialmente si no se implementan prácticas de riego adecuadas.

En los módulos de Pichidegua y Molina los resultados demuestran que el uso de biofiltros podría reducir notablemente el impacto ambiental de la aplicación de purines de cerdo en mezcla con agua de riego.

Los módulos de Curicó y Teno tuvieron una eficiencia en la remoción de sólidos suspendidos que fluctuó entre 60 y 23% en BF₁, y entre 51 y 34% en BF₂. San Fernando destaca claramente, con 80%, probablemente debido a la alta cobertura de suelo de la estrata herbácea del BF₂, que favorece la retención de sólidos.

Cuadro 30. Sólidos suspendidos (mg/l) al ingreso de potrero y en el área de biofiltros, y eficiencia de remoción (%). Promedio de tres temporadas.

<table>
<thead>
<tr>
<th>Módulo</th>
<th>Sólidos suspendidos (mg/l)</th>
<th>Eficiencia en la remoción de sólidos suspendidos (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ingreso al potrero</td>
<td>Ingreso al área de BF</td>
</tr>
<tr>
<td>San Fernando</td>
<td>90,7</td>
<td>1.104,4</td>
</tr>
<tr>
<td>Chimbarongo</td>
<td>281,9</td>
<td>752,7</td>
</tr>
<tr>
<td>Pichidegua</td>
<td>119,8</td>
<td>245,9</td>
</tr>
<tr>
<td>Requínoa</td>
<td>115,4</td>
<td>44,3</td>
</tr>
<tr>
<td>S. Familia</td>
<td>12,8</td>
<td>99,3</td>
</tr>
<tr>
<td>Molina</td>
<td>560,3</td>
<td>1.140,7</td>
</tr>
<tr>
<td>Teno</td>
<td>170,2</td>
<td>235,6</td>
</tr>
<tr>
<td>Curicó</td>
<td>10,1</td>
<td>42,1</td>
</tr>
<tr>
<td>Promedio</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Del análisis de los cuadros anteriores resulta posible concluir que la eficiencia en la reducción de sólidos contenidos en el agua de riego es alta. El promedio para el control de sólidos sedimentables y suspendidos fue de 57,9% para BF₁ (64,8 sedimentables y 50,9% suspendidos), mientras que para BF₂ fue de 57,1 (56,1 sedimentables y 58,0% suspendidos). Ello indica que el establecimiento de una estrata herbácea de 8 m de ancho sería suficiente para la remoción de ambos tipos de contaminantes, dado que la pradera opone resistencia al avance del agua, permitiendo que los sólidos disueltos decanten y queden retenidos, evitando su desplazamiento con el agua de riego. En este caso, la estrata arbustiva/arbórea no influye mayormente en la eficiencia de retención.

Relación entre eficiencia de remoción y carga de contaminante

Se logró determinar un alto grado de asociación entre la carga de sedimentos que llega a la entrada de los biofiltros y su nivel de eficiencia de remoción, información muy útil para definir criterios de diseño de un biofiltro.

La figura 30 muestra la relación entre estas variables para cada tipo de biofiltro. Se aprecia que con cargas de aproximadamente 30 mg/l de sólidos sedimentables que llegan a la entrada del biofiltro en el agua de riego, es posible obtener eficiencias del orden de 95% en su retención.
Por otra parte, la figura 31 indica que con cargas de 500 a 800 mg/l de sólidos suspendidos a la entrada de los biofiltros, se alcanzarían eficiencias entre 75% y 80% en ambos tipos de biofiltros.

Figura 30. Correlación entre sólidos sedimentables a la entrada del biofiltro y eficiencia de remoción.

Figura 31. Correlación entre sólidos suspendidos a la entrada del biofiltro y eficiencia de remoción.
Conclusiones

- Se encontraron niveles de eficiencia diferenciados por tipo de contaminante y tipo de biofiltro. La eficiencia de remoción promedio para sólidos sedimentables fue de 65 y 56% en BF$_1$ y BF$_2$, respectivamente. En cuanto a sólidos suspendidos, se registraron eficiencias promedio de 51 en BF$_1$ y 58% en BF$_2$.
- Se encontró una estrecha relación entre la carga de sedimentos que llega al biofiltro en el agua de riego y la eficiencia de remoción. Con cargas entre 25 y 30 mg/l de sólidos sedimentables es posible obtener niveles de eficiencia de 90 a 95% para ambos tipos de biofiltros.
- En cuanto a sólidos suspendidos, cargas entre 500 mg/l y 800 mg/l a la entrada de biofiltros permiten obtener eficiencias de retención del orden de 80% en BF$_1$ y BF$_2$.
- Estas asociaciones vegetales, especialmente la estrata herbácea, fueron eficientes en la remoción de sólidos y constituyen un aporte al control de la contaminación difusa a nivel predial.

BIBLIOGRAFÍA CONSULTADA

RUIZ, I. 1996. Praderas para Chile, Segunda Edición. 734 p.
WENGER, S. 1999. A review of the scientific literature on riparian buffer width, extent and vegetation. Institute of Ecology University of Georgia.
10. EVALUACIÓN DE LA ESTRATA HERBÁCEA Y ARBÓREA DE LOS BIOFILTROS
Francisco Tapia Flores

Evaluación de la estrata herbácea

- Producción de materia seca de la pradera
Se realizaron cortes periódicos de la pradera desde el inicio de las evaluaciones, con el objetivo de analizar la evolución en su crecimiento. Para ello se consideró una zona de exclusión en cada biofiltro, material que fue pesado y secado a estufa a 60ºC, por 48 horas, en los laboratorios del Centro Regional de Investigación La Platina, de INIA, a fin de estandarizar el peso y expresar la información recolectada en términos de materia seca (ms) por unidad de superficie.

El cuadro 31 presenta el rendimiento de la pradera, en kilos de materia seca por hectárea, para cada módulo.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pichidegua</td>
<td>12.973</td>
<td>17.047</td>
<td>13.251</td>
<td>14.424</td>
</tr>
<tr>
<td>Chimbarongo</td>
<td>7.554</td>
<td>7.186</td>
<td>7.850</td>
<td>7.530</td>
</tr>
<tr>
<td>Requínoa</td>
<td>5.755</td>
<td>5.760</td>
<td>7.025</td>
<td>6.180</td>
</tr>
<tr>
<td>San Fernando</td>
<td>7.186</td>
<td>7.241</td>
<td>3.149</td>
<td>5.859</td>
</tr>
<tr>
<td>Teno</td>
<td>5.833</td>
<td>4.852</td>
<td>4.150</td>
<td>4.945</td>
</tr>
<tr>
<td>Molina</td>
<td>9.001</td>
<td>8.249</td>
<td>2.500</td>
<td>6.583</td>
</tr>
<tr>
<td>S. Familia</td>
<td>6.742</td>
<td>4.903</td>
<td>6.475</td>
<td>6.040</td>
</tr>
<tr>
<td>Curicó</td>
<td>1.893</td>
<td>6.667</td>
<td>6.475</td>
<td>5.012</td>
</tr>
<tr>
<td>Promedio</td>
<td>7.117</td>
<td>7.738</td>
<td>6.359</td>
<td>7.072</td>
</tr>
</tbody>
</table>

La producción de la estrata herbácea en los biofiltros, expresada en ms, fluctuó en promedio entre 14.424 kg/ha en Pichidegua –predio que dispone los purines de cerdo en el riego de sus cultivos, lo que explica su mayor productividad por los aportes de nitrógeno– y 4.945 kg/ha en Teno. Es importante comentar la producción de la pradera alcanzada en Chimbarongo, con 7.530 kg/ha, pues se trata del predio donde se aplican las mayores dosis de fertilizantes nitrogenados, y la de Molina, donde, como consecuencia de aplicaciones de purines invernales, se produjo destrucción de gran parte de la pradera.
durante la tercera temporada, lo que explica la baja productividad alcanzada.

La producción promedio de la estrata herbácea en los ocho módulos en general fue bastante similar en las tres temporadas de estudio, con 7.072 kg de materia seca/ha/año. Un aspecto relevante es la producción estacional de la pradera, ya que en promedio la mayor productividad mensual se logra entre noviembre y enero, con aproximadamente un 45% del total anual, mientras que en el período de invierno, mayo a julio, se logra sólo el 11,4% (figura 32).

![Producción estacional anual de la pradera, en promedio de tres años (2004-2007).](image)

La estacionalidad determina que la eficiencia en la captura de contaminantes difusos no sea continua en el tiempo. Lo anterior debe considerarse especialmente en el caso de nitrógeno, y sobre todo en aquellos predios ganaderos que disponen sus purines en el suelo, como sistema de tratamiento. La eficiencia determinada en la reducción de nitratos en el agua subsuperficial durante el invierno se debe más bien a otros procesos, y en menor grado a su extracción por la pradera. Entre estos procesos, probablemente la denitrificación sea el más importante, ya que bajo condiciones anaeróbicas, el nitrato se reduce y se libera a la atmósfera como nitrógeno gaseoso.

Extracción de nitrógeno por la pradera

Una de las funciones de la pradera como parte de un biofiltro es la extracción de nitrógeno (N) del sistema. Por lo tanto, se evaluó la concentración de este elemento en la materia seca y, a partir de ahí, se estimó la extracción total al interior de cada módulo. En el cuadro 32 se presenta la concentración de N en la materia seca, en los 8 módulos, en forma trimestral, como promedio de los tres años de estudio.
Cuadro 32. Concentración de N en la materia seca de la pradera (%).

<table>
<thead>
<tr>
<th>Módulo</th>
<th>Mayo–julio</th>
<th>Agosto–octubre</th>
<th>Noviembre–enero</th>
<th>Febrero–abril</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pichidegua</td>
<td>2,42</td>
<td>2,30</td>
<td>2,08</td>
<td>2,46</td>
<td>2,31</td>
</tr>
<tr>
<td>Chimbarongo</td>
<td>2,16</td>
<td>1,66</td>
<td>1,74</td>
<td>2,11</td>
<td>1,92</td>
</tr>
<tr>
<td>Requínoa</td>
<td>1,84</td>
<td>1,51</td>
<td>1,67</td>
<td>1,95</td>
<td>1,74</td>
</tr>
<tr>
<td>San Fernando</td>
<td>1,89</td>
<td>1,69</td>
<td>1,83</td>
<td>2,12</td>
<td>1,88</td>
</tr>
<tr>
<td>Teno</td>
<td>1,88</td>
<td>1,46</td>
<td>1,45</td>
<td>1,91</td>
<td>1,67</td>
</tr>
<tr>
<td>Molina</td>
<td>3,39</td>
<td>3,22</td>
<td>3,38</td>
<td>3,49</td>
<td>3,37</td>
</tr>
<tr>
<td>Sagrada Familia</td>
<td>1,67</td>
<td>1,65</td>
<td>1,55</td>
<td>1,88</td>
<td>1,69</td>
</tr>
<tr>
<td>Curicó</td>
<td>2,02</td>
<td>1,19</td>
<td>1,47</td>
<td>1,74</td>
<td>1,60</td>
</tr>
<tr>
<td>Promedio</td>
<td>2,16</td>
<td>1,83</td>
<td>1,90</td>
<td>2,21</td>
<td>2,02</td>
</tr>
</tbody>
</table>

En el cuadro 32 se observa que la concentración de N en la materia seca de la pradera, que corresponde a la estrata herbácea de los biofiltros, varió entre 1,19% en Curicó y 3,49% en Molina. Los datos promedio de cada trimestre evidencian que durante los meses de invierno se alcanzan las mayores concentraciones de N, debido a que la producción de materia seca es menor. Por el contrario, en los meses de primavera-verano, cuando se obtienen las mayores tasas de crecimiento, la concentración de N es menor. En efecto, durante el período comprendido entre febrero y julio, inclusive, donde se da la más baja producción de la pradera, la concentración de N, en la materia seca va de 2,16% a 2,21%, mientras que en el período de mayor crecimiento y actividad de la pradera, entre agosto y enero, el porcentaje de N disminuye a entre 1,83% y 1,90%.

No obstante lo comentado, se puede concluir que las fluctuaciones en la concentración de N son reducidas; en promedio no exceden de un punto porcentual. Es decir, la extracción de N está limitada por la fisiología de la especie y, en definitiva, se puede establecer que la cantidad extraída de este nutriente depende fundamentalmente de la producción de materia seca.

Otro factor destacable son las diferencias observadas entre módulos (figura 33). En los módulos de Chimbarongo, Requínoa, San Fernando, Teno, Sagrada Familia y Curicó, la concentración promedio de

Figura 33. Concentración promedio de N (%) en la materia seca.
Uso de Biofiltros para mejorar la calidad del agua de riego

N en la materia seca es muy similar: entre 1,60 y 1,92%. Sin embargo, en aquellos módulos donde se riega con una mezcla de agua con purines de cerdo, la concentración de N en los pastos es muy superior: 2,31% Pichidegua y 3,37% en Molina. El fenómeno se explica porque la ballica tiene habilidad para capturar el amonio, forma en que se encuentra principalmente el N en los purines de cerdo.

Los antecedentes reseñados permiten afirmar que la extracción de N por la pradera sigue las mismas curvas de crecimiento de los pastos en el tiempo. Por ello, en el cuadro 33 se presenta la extracción total del nutriente por módulo y temporada.

Cuadro 33. Extracción de N por la estrata herbácea (kg/ha).

<table>
<thead>
<tr>
<th></th>
<th>Extracción de N (kg/ha/temporada)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2004/05</td>
</tr>
<tr>
<td>Pichidegua</td>
<td>248</td>
</tr>
<tr>
<td>Chimbarongo</td>
<td>133</td>
</tr>
<tr>
<td>Requínoa</td>
<td>98</td>
</tr>
<tr>
<td>San Fernando</td>
<td>152</td>
</tr>
<tr>
<td>Teno</td>
<td>77</td>
</tr>
<tr>
<td>Molina</td>
<td>305</td>
</tr>
<tr>
<td>Sagrada. Familia</td>
<td>105</td>
</tr>
<tr>
<td>Curicó</td>
<td>34</td>
</tr>
<tr>
<td>Promedio</td>
<td>144</td>
</tr>
</tbody>
</table>

Los datos del cuadro 33 evidencian que la extracción de N depende fundamentalmente de la producción de materia seca de la pradera, de manera que las mayores extracciones, en promedio, se alcanzan en Pichidegua y Molina, con 334 y 222 kg/ha/año, respectivamente. En el resto de los módulos fluctúa en promedio entre 144 kg/ha/año en Chimbarongo y 80 kg/ha/año en Curicó.

En definitiva, la capacidad de la estrata herbácea para extraer nitrógeno depende fundamentalmente de su productividad, ya que la concentración del elemento en la materia seca sólo presenta pequeñas variaciones. Por otra parte, los mayores rendimientos de la pradera se determinaron en los predios que riegan con efluentes derivados de actividades ganaderas, como los módulos de Pichidegua y Molina.

Teniendo en cuenta la estacionalidad de la producción y los niveles de nitrógeno aplicados al suelo, se postula que la remoción de este nutriente se da, fundamentalmente, no por la extracción por parte de la pradera, sino más bien por procesos de denitrificación que ocurren bajo la superficie del suelo, en condiciones anaeróbicas.

Evaluación de la estrata arbórea de los biofiltros

- **Productividad de la estrata arbórea en el módulo de Molina**

Con el propósito de estimar el crecimiento y la extracción de N de una especie interesante en la conformación de la estrata arbórea de un biofiltro, como eucalipto, se midió la producción de materia seca de E. globulus y E. camaldulensis en el módulo de Molina. Para estos efectos se hicieron dos evaluaciones, una al término de la primera temporada de crecimiento, aprovechando la poda realizada...
con la finalidad de bajar la altura de las plantas y promover un mayor desarrollo del área foliar, y la otra luego del tercer año de crecimiento. En los otros módulos no se pudo realizar mediciones de esta naturaleza, debido a su carácter destructivo.

El cuadro 34 muestra la productividad de la primera evaluación de la estrata arbórea, expresada en kg de ms/ha, luego de 10 meses de su plantación (noviembre 2004-agosto 2005). Con este propósito, se cosecharon dos muestras de 2 m² cada una. El rendimiento estimado corresponde a la producción de ms de E. globulus y E. camaldulensis, que fueron plantados en alta densidad, con un arreglo espacial de 50 x 50 cm, donde cada especie cubría el 50% de la superficie plantada.

<table>
<thead>
<tr>
<th>Eucalipto</th>
<th>Peso seco (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tronco</td>
</tr>
<tr>
<td>Muestra 1</td>
<td>19.175</td>
</tr>
<tr>
<td>Muestra 2</td>
<td>13.825</td>
</tr>
<tr>
<td>Promedio</td>
<td>16.500</td>
</tr>
<tr>
<td>%</td>
<td>47,2</td>
</tr>
</tbody>
</table>

Debe indicarse que el 49,2% de la producción de ms correspondió a E. camaldulensis y el 50,8% a E. globulus. La productividad promedio total llegó a 34,96 toneladas (t) de ms/ha. El 47,2% correspondió a troncos, un 38,0% a hojas y un 14,8% a ramas verdes. Este rendimiento es el resultado de un exuberante crecimiento de la especie que, tal como se discute a continuación, se comporta como una “bomba” extractora de agua y de nitrógeno, ambos excedentarios de la aplicación de purines de cerdos sobre el suelo. Precisamente, la poda realizada a los árboles tiene como finalidad principal acrecentar el crecimiento de estructuras verdes, como hojas, para maximizar la extracción de agua y nitrógeno.

La segunda evaluación para determinar la producción de materia seca de los eucaliptos se realizó en agosto del 2007, es decir luego de tres años desde el establecimiento y dos años después de la poda realizadas a las plantas (cuadro 35)

Cuadro 35. Producción de ms de la asociación de E. globulus y E. camaldulensis (kg/ha) al tercer año desde el establecimiento (Molina, agosto 2007)

<table>
<thead>
<tr>
<th>Asociación sp. de eucalipto</th>
<th>Peso seco (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tronco</td>
</tr>
<tr>
<td>E. camaldulensis</td>
<td>22.734</td>
</tr>
<tr>
<td>Total</td>
<td>29.181</td>
</tr>
</tbody>
</table>

El eucalipto presenta un gran crecimiento, con una producción total de 82,4 t de ms/ha, luego de dos años de crecimiento, y un promedio de 41,2 t de ms/ha/año, donde predomina ostensiblemente E. camaldulensis, con un 73,6% de la producción total de ms. Se trata de la especie que tuvo la mejor adaptación a la alta salinidad del agua de riego, condición impuesta por los purines de cerdo.
• **Extracción de nitrógeno de la estrata arbórea-eucalipto**

En el cuadro 36 se presenta la concentración de N, en las distintas estructuras vegetativas del eucalipto, así como la extracción total de este elemento, expresada en kg/ha, para las dos evaluaciones realizadas.

Cuadro 36. Concentración de N en las estructuras vegetales de plantas de eucalipto, y extracción de N (kg/ha).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Concentración de N (%)</td>
<td>Extracción de N (kg/ha)</td>
</tr>
<tr>
<td>Tronco</td>
<td>0,52</td>
<td>86</td>
<td>2,16</td>
<td>2,28</td>
</tr>
<tr>
<td>Rama</td>
<td>0,61</td>
<td>32</td>
<td>0,73</td>
<td>0,97</td>
</tr>
<tr>
<td>Hojas</td>
<td>2,8</td>
<td>372</td>
<td>0,31</td>
<td>0,55</td>
</tr>
<tr>
<td>Total</td>
<td>490</td>
<td>206</td>
<td>787</td>
<td>992</td>
</tr>
</tbody>
</table>

*La extracción de nitrógeno consideró la asociación de E. camaldulensis y E. globulus, donde la primera especie aportó un 73,6% de la ms y la segunda un 26,4%, por unidad de superficie.

Respecto de la concentración de N en las estructuras vegetales, se puede señalar que en un árbol nuevo, a un año desde la plantación, la mayor parte se encuentra contenido en las hojas, con un 2,8%. En árboles de mayor edad, se concentra principalmente en estructuras de reserva, como es el tronco, con una concentración de nitrógeno que fluctuó entre 2,16 y 2,28% en E. globulus y E. camaldulensis, respectivamente.

Al analizar la extracción de N, se puede indicar que, mientras al primer año de evaluación se alcanzó un total de 490 kg/ha/año, en la segunda evaluación se llegó a un total de 992 kg de N/ha. Como esta extracción corresponde a la acumulación de dos años, se puede indicar que en promedio se obtuvo una extracción anual de aproximadamente de 496 kg de N/ha/año, cifra muy coincidente con la obtenida al primer año de evaluación.

Conclusiones

• La pradera alcanzó una productividad promedio para todos los módulos de 7.072 kg/ha/año. Ello permitió extracciones de N que fluctuaron entre 80 kg/ha/año, en Curicó, y 334 kg/ha/año, en Pichidegua.

• El eucalipto es una especie altamente extractiva de N, con un promedio de alrededor de 500 kg/ha/año. Por tanto, para sistemas agropecuarios donde la principal limitante es el nitrógeno excedentario, parece ser una especie de alto interés.

• Considerando sólo el módulo de Molina, donde la pradera alcanzó una extracción anual de N de 220 kg/ha, se puede estimar una extracción total de aproximadamente 720 kg N/ha/año, para un biofiltro conformado por pradera y eucalipto. Una asociación vegetal de esta naturaleza podría constituir una opción para un sistema productivo basado en cultivos y producción de cerdos, donde los purines y su contenido de nitrógeno puedan ser removidos y ajustarse a las normativas para la disposición de efluentes.
11. CONCLUSIONES Y RECOMENDACIONES

11.1. CONCLUSIONES

El estudio permitió concluir que los biofiltros son una tecnología eficiente para reducir contaminantes difusos del agua de riego en la zona central del país. Esta aseveración es de gran relevancia para contaminantes como residuos de plaguicidas, sólidos sedimentables y suspendidos en agua superficial, así como para nitratos contenidos en el agua subsuperficial.

Los resultados indicaron que los biofiltros son sitio-específicos. También, que su conformación y diseño dependen fundamentalmente del tipo de contaminante que se desee abatir, de las características de suelo, clima y manejo del predio en su conjunto. El análisis estadístico corrobora lo anterior, pues determina que existe dependencia entre el tipo de biofiltro y el contaminante a remover.

Biofiltros conformados sobre la base de una pradera son altamente eficientes en la reducción de sólidos sedimentables y suspendidos en el agua de riego, mientras que biofiltros conformados además por una estrata arbustiva y/o arbórea son más eficientes en la remoción de nitratos en el agua subsuperficial y algunos residuos de plaguicidas residuales contenidos en el agua superficial.

De acuerdo a la respuesta de los biofiltros en la reducción de contaminantes del agua de riego, se determinaron tres categorías:

- Problemas en los que los biofiltros presentan baja eficiencia; menor a 20%: nitratos y fósforo disuelto en el agua superficial, y Atrazina.
- Problemas en los que los biofiltros presentan eficiencia media; 20 a 49,9%: Clorpirifos y Metolachlor.
- Problemas en los que los biofiltros presentan alta eficiencia; 50% ó mayor: nitratos en agua subsuperficial, sólidos suspendidos y sedimentables.

Para la mayor parte de los contaminantes evaluados, se observó una recarga de su concentración en el agua de riego, en la medida que avanza sobre el área de cultivo. El movimiento principal de los contaminantes ocurre durante las temporadas de riego, dado que en el invierno se apreció un escaso escurrimiento de aguas lluvias.

El mayor impacto de los biofiltros sobre la remoción de nitratos se evidenció en el agua subsuperficial durante la temporada de invierno, donde BF₁ logró una eficiencia superior al 70%. El efecto sobre este contaminante en las aguas superficiales, tanto en temporadas de riego como de lluvias, fue bajo.

Se estableció una alta relación, de tipo cuadrática, entre la carga de sólidos y residuos de plaguicidas que ingresan al área de biofiltros y su eficiencia de remoción. Conociendo la carga de contaminantes en el agua de riego, se podría estimar la eficiencia potencial de un biofiltrto en su reducción.

La eficiencia medida para el control de P soluble en agua de riego, en los dos tipos de biofiltro fue baja, entre 2,6 y 5,3%.

Al evaluar la productividad de la pradera como parte de un biofiltro en todos los módulos, se deter-
minó un rendimiento promedio de materia seca de 7.072 kg/ha/año, con una extracción de N de 148 kg/ha/año.

Entre las especies arbóreas, se evaluó en un módulo la productividad de eucalipto. Se midió un rendimiento de ms de 41,2 t/ha/año, con una extracción de N de 490 kg/ha/año, lo que resulta de alto interés para sistemas agropecuarios donde la principal limitante es el N excedentario. E. camaldulensis resultó la especie de mejor adaptación bajo condiciones de alta salinidad en el agua de riego, en comparación a otros tipos de eucaliptos evaluados.

Entre los arbustos y árboles, los de mejor comportamiento fueron eucalipto, álamo, avellano europeo y sauce mimbre, que sobresalió por su rápida adaptación al sistema. Por el contrario, especies como peumo, maqui, chilco, coigüe, pimiento, arándano y olivo, no se adaptaron. En relación a la estrata herbácea, las especies de mejor comportamiento fueron ballica y festuca, mientras que falaris no prosperó dentro de esta mezcla.

Al implementar un sistema de biofiltros, los agricultores deben incorporar conceptos de buenas prácticas agrícolas en el manejo de sus sistemas productivos, identificando puntos críticos del manejo agronómico e introduciendo cambios necesarios para controlar el problema de contaminación en su origen. Lo anterior tiene directa relación con trabajar bajo el concepto de “mínima labranza”, fertilizar de acuerdo a balances nutricionales y parcialización de dosis de nitrógeno, desarrollar programas de control según “manejo integrado de plagas y enfermedades”, uso de productos en base a ingredientes activos de baja toxicidad para el ambiente, revisión del diseño agronómico e hidráulico del sistema de riego y control de tiempos y caudales de riego aplicados a los cultivos. Una vez controlados estos factores y de persistir el problema de contaminación, se debería implementar un sistema de biofiltros que complemente la estrategia anterior.

11.2. RECOMENDACIONES

Sobre la base de los resultados obtenidos en el proyecto, las recomendaciones para el establecimiento de biofiltros, debido al carácter sitio-específico definido, deben considerar la interacción entre contaminante y el sistema agropecuario con sus características. A continuación se proponen tres recomendaciones para cada una de las regiones en estudio, considerando los principales sistemas productivos desarrollados en cada una de ellas.

Región del Libertador Bernardo O’Higgins

Los módulos de la región se orientaron a tres sistemas productivos, frente a los cuales se entregan las siguientes recomendaciones.

- Maíz (semilla, choclo y grano)
 Considerando que los principales contaminantes asociados a este rubro son plaguicidas residuales, nitratos y sedimentos, se sugiere:

 Alternativa 1. Biofiltro conformado por pradera de un ancho mínimo de 8 metros (festuca y ballica, en dosis de 70 kg/ha), más una estrata de arbustos de baja altura (avellano europeo, sauce mimbre), con un ancho de al menos 6 metros. Esta asociación vegetal es recomendable para problemas de sedimentos, nitratos y residuos de plaguicidas, ya que la pradera reduce la velocidad del agua, permite retener los sólidos y mejora la capacidad de infiltración del suelo, mientras que el gran
volumen de raíces proporcionado por la estrata arbustiva posibilita que los microorganismos aso-
ociados al sistema radicular degraden los residuos de plaguicidas y capturen los nitratos disueltos
en el agua.

Alternativa 2. Si el problema es fundamentalmente excesos de sedimentos, se recomienda pri-
vilegiar la conformación de un biofiltro sólo de pradera, de al menos 8 metros de ancho, con una
mezcla de festuca y ballica, en la dosis indicada.

- **Frutales**
 En este caso, el principal contaminante asociado son los sedimentos. En el sistema productivo que
caracteriza a los frutales, el costo del suelo es relevante y por ello se maximiza el uso de este re-
curso. Se recomienda establecer biofiltros basados sólo praderas, ya que arbustos y árboles tienen
el inconveniente de ser hospederos de algunas plagas y competir por luz.
 Alternativa 1. Manejar una cubierta herbácea permanente entre las hileras, lo que permite reducir
significativamente el arrastre de sedimentos.
 Alternativa 2. Si el productor no acostumbra o no desea trabajar con cobertura vegetal entre hile-
ras, se recomienda el establecimiento de una estrata herbácea al final del potrero, de al menos 8
metros de ancho, conformada por una mezcla de festuca y ballica, en dosis de 70 kg/ha.

- **Hortalizas**
 Los contaminantes predominantes se relacionan con sedimentos, nitratos, fósforo y residuos de
plaguicidas.
 En este contexto se propone el uso de biofiltro conformado sólo por pradera, de al menos 8 metros
de ancho con una mezcla de festuca y ballica (70 kg/ha). La recomendación se justifica debido a
que se trata de cultivos de baja altura, donde el establecimiento de una estrata arbustiva o arbórea
no resulta compatible con el cultivo principal, pues interferiría fuertemente la captación de luz. Tal
sombreamiento puede afectar un área bastante más extensa que la del biofiltro mismo, reduciendo
la productividad del cultivo principal. La alternativa sugerida es altamente eficiente en la captura
de sedimentos y de mediana eficiencia para nitratos y residuos de plaguicidas. Respecto a fósforo
se esperaría retenerlo de manera indirecta, ya que normalmente se moviliza adsorbido a las partí-
culas finas del suelo.

Región del Maule
Los módulos de la región se orientaron a tres sistemas productivos:
- Maíz (semilla, choclo y grano)
- Frutales
- Sistema productivo mixto ganado-cultivo.

Para los dos primeros se recomienda las mismas opciones indicadas en las páginas anteriores para
la Región de O’Higgins, y para el tercero se propone:

- **Sistema productivo mixto ganado-cultivo**
 En esta región (como también en la de O’Higgins) existen predios que combinan la agricultura con
la producción de cerdos bajo sistemas intensivos. En dicho esquema, normalmente los purines de cerdo son dispuestos en los sistemas de riego de los cultivos, fundamentalmente maíz, como parte del tratamiento de efluentes. En el contexto descrito, los contaminantes que predominan son: nitratos, coliformes fecales, sedimentos y carga orgánica contenida en el agua. La recomendación que se indica, también es válida para la Sexta Región.

Se propone un biofiltro conformado por tres estratass. La primera, una pradera de al menos 8 metros de ancho al final del potrero, paralela a la acequia de desagüe. Las otras estratass deben corresponder a arbustos y árboles altamente extractivos de agua y nitratos, como sauce mimbre, eucalipto y álamo, en una franja no menor a 6 metros. La pradera resulta muy eficiente en la captura de sedimentos y de carga orgánica. Las estratass arbustivas y arbóreas, con las especies señaladas, se encargan de remover el nitrógeno excedentario (especialmente en agua subsuperficial).

En el Anexo 1, se presenta un protocolo de establecimiento de biofiltros, que sirve como guía para replicar esta experiencia, sobre la base de las recomendaciones entregadas para los distintos sistemas productivos en las regiones de O’Higgins y del Maule.
TERCERA PARTE
ANEXOS Y GLOSARIO
ANEXO 1.
PROTOCOLO PARA EL ESTABLECIMIENTO Y MANEJO DE BIOFILTROS

Los procedimientos a seguir, por un productor, para establecer un biofiltro en su predio son los siguientes:
1. Definir la restricción ambiental respecto a su sistema productivo y la calidad de sus aguas de riego.
2. Determinar, mediante análisis de laboratorio, los contenidos del contaminante restrictivo en su agua de riego.
3. Caracterizar el manejo agronómico dado a su cultivo, desde el punto de vista del contaminante restrictivo.
4. Identificar puntos críticos en su manejo agronómico e introducir cambios necesarios para controlar el problema en su origen. Se debe analizar los siguientes factores:
 - Preparación de suelos. Trabajar bajo el concepto de “mínima labranza”.
 - Fertilización. Fertilizar de acuerdo a balances nutricionales y parcializar dosis de nitrógeno.
 - Control de plagas, enfermedades y malezas. Desarrollar programas de control con “manejo integrado”. Uso de productos sobre la base de ingredientes activos de baja toxicidad para el ambiente.
 - Riego. Revisar el diseño agronómico e hidráulico del sistema de riego. Controlar tiempos y caudales de riego.
5. Una vez aplicadas las medidas de control en origen, evaluar la calidad del agua de riego. Si ésta aún excede los límites indicados por las restricciones, establecer medidas adicionales de control, como el establecimiento de un biofiltro.
6. De acuerdo al sistema productivo, seguir las indicaciones que se detallan a continuación:
 a) Maíz (semilla, choclo y grano): considerando que los principales contaminantes asociados a este rubro son plaguicidas residuales, nitratos y sedimentos, se recomienda:
 - Alternativa 1. Biofiltro conformado por pradera de un ancho mínimo de 8 metros (festuca y ballica, en dosis de 70 kg/ha), más una estrata de arbustos de baja altura (avellano europeo, sauce mimbre), con un ancho de al menos 6 metros. Esta asociación vegetal es recomendable para problemas de sedimentos, nitratos y residuos de plaguicidas, ya que la pradera reduce la velocidad del agua, permite retener los sólidos y mejora la capacidad de infiltración del suelo, mientras que el gran volumen de raíces proporcionado por la estrata arbustiva posibilita que los microorganismos asociados al sistema radicular degraden los residuos de plaguicidas y capturen los nitratos disueltos en el agua.
 - Alternativa 2. Si el problema es fundamentalmente excesos de sedimentos, se recomienda privilegiar la conformación de un biofiltro sólo de pradera, de al menos 8 metros de ancho, con una mezcla de festuca y ballica, en la dosis indicada.
 b) Frutales: en este caso, el principal contaminante asociado son los sedimentos. En el sistema
productivo que caracteriza a los frutales el costo del suelo es relevante y por ello se maximiza el uso de este recurso. Se recomienda establecer biofiltros basados sólo praderas, ya que arbustos y árboles tienen el inconveniente de ser hospederos de algunas plagas y competir por luz.

Alternativa 1. Manejar una cubierta herbácea permanente entre las hileras, lo que permite reducir significativamente el arrastre de sedimentos.

Alternativa 2. Si el productor no acostumbra o no desea trabajar con cobertura vegetal entre hileras, se recomienda el establecimiento de una estrata herbácea al final del potrero, de al menos 8 metros de ancho, conformada por una mezcla de festuca y ballica, en dosis de 70 kg/ha.

c) Hortalizas: los contaminantes predominantes se relacionan con sedimentos, nitratos, fósforo y residuos de plaguicidas. En este contexto se propone el uso de biofiltro conformado sólo por pradera, de al menos 8 metros de ancho con una mezcla de festuca y ballica (70 kg/ha). La recomendación se justifica debido a que se trata de cultivos de baja altura, donde el establecimiento de una estrata arbustiva o arbórea no resulta compatible con el cultivo principal, pues interferiría fuertemente la captación de luz. Tal sombreado puede afectar un área bastante más extensa que la del biofiltro mismo, reduciendo la productividad del cultivo principal. La alternativa sugerida es altamente eficiente en la captura de sedimentos y de mediana eficiencia para nitratos y residuos de plaguicidas. Respecto a fósforo se esperaría retenerlo indirectamente, ya que normalmente se moviliza adsorbido a las partículas finas del suelo.

d) Sistema productivo mixto ganado-cultivo. Existen predios que combinan la agricultura con la producción de cerdos bajo sistemas intensivos. En este esquema, normalmente los purines de cerdo son dispuestos en los sistemas de riego de los cultivos, fundamentalmente maíz, como parte del tratamiento de efluentes. En el contexto descrito, los contaminantes predominantes son: nitratos, coliformes fecales, sedimentos y carga orgánica contenida en el agua. Se propone un biofiltro conformado por tres estratas. La primera, una pradera de al menos 8 metros de ancho al final del potrero, paralelo a la acueducto de desagüe. Las otras estratas deben corresponder a arbustos y árboles, altamente extractivos de agua y nitratos, como sauce mimbre, eucalipto y álamo, en una franja no menor a 6 metros. La pradera resulta muy eficiente en la captura de sedimentos y de carga orgánica. Las estratas arbustivas y arbóreas, con las especies indicadas, se encargan de remover el nitrógeno excedentario (especialmente en agua subterránea).

7.- Establecimiento del biofiltro.

Una vez definidas la o las especies a usar, así como el ancho del biofiltro, se procede a su establecimiento, de acuerdo a las siguientes consideraciones:

- **Época de siembra o plantación**

 La estrata herbácea puede establecerse en dos épocas del año, otoño y primavera. Sin embargo, se considera como óptima la siembra de otoño, donde se produce la menor competencia con malezas y se logra una mejor cobertura y crecimiento de las especies. Lo anterior se fundamenta en una menor pérdida de humedad en la cama de semilla, lo que permite conservar una humedad adecuada para la germinación. Las especies forrajeras recomendadas presentan bajas temperaturas de germinación, más acordes con las temperaturas de otoño-invierno.
La mejor época para el establecimiento de las especies leñosas es a mediados o salidas de invierno. Así se aprovechará la humedad almacenada en el suelo, producto de las precipitaciones invernales, y también las mayores temperaturas que comienzan a registrarse.

- **Preparación de suelo**
 Se trata de un aspecto fundamental, ya que los biofiltros son de tipo permanente. Cualquier detalle o falla en esta etapa los acompañará en toda su vida útil, y correcciones posteriores implicarán mayores costos. Uno de los principales aspectos a considerar es la nivelación del suelo de establecimiento, o al menos realizar labores para emparejar, a fin de que el agua de escorrentía superficial atraviese el biofil tro en forma de lámina y no se produzcan flujos preferentes o acumulaciones en sectores bajos. Pendientes de 1 a 2% se estiman adecuadas para alcanzar un alto grado de eficiencia en la remoción de diferentes contaminantes, especialmente sedimentos.

 En cuanto a labranza de suelo, antes del establecimiento es aconsejable realizar trabajos de subsolado en verano y/o aradura con arado cincel, para romper capas impermeables y facilitar la infiltración de agua en el perfil de suelo. No se debe olvidar que una de las características de un biofil tro es su alto poder de infiltración, por lo que se deben privilegiar labores que ayuden en ese sentido. La preparación de suelo y el tipo de implemento de labranza son cruciales al establecer el sistema. Otra consideración relevante al momento de iniciar la preparación de suelos, especialmente en aquellos de texturas finas, es su grado de humedad. Resulta conveniente iniciar las labores con suelo en estado friable, ya que humedades mayores originarán terrones que no son posibles de reducir mediante rastrajes. Esta situación podría dificultar la formación de una cama de semilla mullida para el establecimiento de la pradera, afectando su emergencia y cobertura de suelo, aspecto de alta importancia para la función de remoción de sedimentos que cumple la estrata herbácea en un biofil tro.

- **Fertilización**
 Se recomienda realizar una aplicación de fertilizantes sólo para apoyar el establecimiento de las especies. En el caso de la estrata herbácea, se sugiere aplicar 90 unidades de nitrógeno/ha y 60 unidades de fósforo, como P₂O₅/ha, a la siembra. Posteriormente, los requerimientos de esta estrata deberán ser cubiertos con el arrastre de nutrientes a través del agua de escorrentía superficial.

 Para los arbustos y árboles se requiere una fertilización de plantación de acuerdo a las necesidades de las especies. El objetivo en esta fase es un rápido establecimiento de las plantas, de manera que cubran lo antes posible el espacio asignado. Al entrar al primer otoño, luego de la plantación, se debe suspender las aplicaciones de fertilizantes o promotores de enraizamiento y dejar al sistema operando solo, de modo que los nutrientes provengan únicamente de los contenidos en el agua que escurre en forma superficial en el predio.

- **Siembra y plantación**
 Respecto a la estrata herbácea, como se ha señalado, se recomienda sembrar una mezcla de ballica y festuca, en dosis de 70 kg/ha. En cuanto a las especies leñosas, habrá que considerar su ubicación espacial, sin mezclar aquellas demasiado competitivas entre sí. Las distancias de plantación se definen cuidadosamente sobre todo en árboles y arbustos. También hay que considerar necesidades de replante para asegurar un buen establecimiento y cobertura del
biofiltro. Algunos marcos de plantación recomendados son:
Álamo: 3 x 2 m.
Eucalipto: 3 x 2 m.
Avellano europeo: 2 x 1 m.
Sauce mimbre: 1 x 1 m.

8.- Manejo de los biofiltros
Una vez establecido el biofiltro, debe realizarse algunas labores de mantención, que se relacionan con los siguientes aspectos.

• **Riego**
El biofiltro ha de ser capaz de mantenerse y crecer con el agua de escorrentía sobre la superficie que se produce al regar el cultivo principal. Cuando se suspendan los riegos, por término del cultivo u otras razones, se debe dar un riego mensual de mantención, para no afectar el crecimiento de las plantas. Especies como álamo, eucalipto, sauce mimbre, avellano europeo y la asociación de ballica con festuca, han mostrado un buen comportamiento en este sentido.

• **Manejo de la pradera**
La estrata herbácea requiere como único manejo su corte periódico, con la finalidad de promover una alta cobertura de la superficie y, por tanto, una mejor condición para la retención de sólidos. Bajo las condiciones de la zona central del país, basta con dos cortes mensuales, entre octubre y febrero, y sólo uno mensual durante el resto del año, para mantener la estrata funcionando activamente.
El corte se realiza con una segadora o “rana”, y el pasto obtenido se aplica en la hilera o entre hilera de árboles y arbustos, como mulch para el control de malezas, especialmente durante el primer año de establecimiento del biofiltro. Así se disminuye la competencia con las especies nobles a las cuales se debe otorgar todas las posibilidades de un rápido establecimiento. La altura de corte recomendada es de 15 cm, lo que resulta adecuado para lograr buenos índices en la remoción de sólidos. Alturas de corte menores a 5 cm en ballica perenne y festuca no son recomendables porque se afecta el nivel de reservas basales de la planta, y se destruyen los puntos de crecimiento y yemas axilares, responsables de mantener un rebrote permanente. Alturas de corte sobre 15 cm dificultan el accionar del biofiltro y tienden a producir “enchampamiento”, sobre todo en festuca, con lo que disminuye progresivamente la cobertura de suelo y la eficiencia del sistema.
ANEXO 2.
FICHAS TÉCNICAS DE ESTABLECIMIENTO Y MANTENCIÓN DE LOS BIOFILTROS

FICHAS TÉCNICAS PARA BIOFILTROS CONFORMADOS POR UNA ESTRATA HERBÁCEA, MÁS ARBUSTOS Y/O ÁRBOLES

Localidad: Chumaco, Requinoa
BF1 Pradera 480 m²
BF1 Arandano-Avellano Europeo 600 m²
Sup. total m²: 1080

<table>
<thead>
<tr>
<th>Jornadas</th>
<th>Labores</th>
<th>Hombre</th>
<th>Tractor c/impl.</th>
<th>Animal</th>
<th>Insumos</th>
<th>Total c/d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mes</td>
<td>Gastos</td>
<td>Gastos</td>
<td>Operativo</td>
<td></td>
</tr>
<tr>
<td>Preparación suelo</td>
<td>Cortar pasto para preparación</td>
<td>May</td>
<td>0.8 5.000</td>
<td></td>
<td></td>
<td>4.000</td>
</tr>
<tr>
<td></td>
<td>Sacar piedras y restos orgánicos</td>
<td>May</td>
<td>0.8 5.000</td>
<td></td>
<td></td>
<td>4.000</td>
</tr>
<tr>
<td></td>
<td>Aradaur sincel</td>
<td>May</td>
<td>0.4 8.000</td>
<td>0.54</td>
<td>8.000</td>
<td>3.200</td>
</tr>
<tr>
<td></td>
<td>Rastaje disco</td>
<td>May</td>
<td>0.54 8.000</td>
<td>0.5</td>
<td>8.000</td>
<td>3.300</td>
</tr>
<tr>
<td></td>
<td>Pala tractor</td>
<td>May</td>
<td>0.5 8.000</td>
<td></td>
<td></td>
<td>3.000</td>
</tr>
<tr>
<td></td>
<td>Emparejar a pala</td>
<td>May</td>
<td>0.8 5.000</td>
<td></td>
<td></td>
<td>4.000</td>
</tr>
<tr>
<td></td>
<td>Siembra</td>
<td>May</td>
<td>0.8 5.000</td>
<td></td>
<td></td>
<td>4.000</td>
</tr>
<tr>
<td></td>
<td>Acarreo semillas y fertilizantes</td>
<td>May</td>
<td>0.8 5.000</td>
<td></td>
<td></td>
<td>4.000</td>
</tr>
<tr>
<td></td>
<td>Aplicación fertilizante</td>
<td>May</td>
<td>0.16 5.000</td>
<td>0.16</td>
<td>5.000</td>
<td>1.250</td>
</tr>
<tr>
<td></td>
<td>Tapado</td>
<td>May</td>
<td>0.4 5.000</td>
<td>0.5</td>
<td>5000</td>
<td>4.900</td>
</tr>
<tr>
<td></td>
<td>Riego plantación</td>
<td>Ago</td>
<td>0.5 5.000</td>
<td></td>
<td></td>
<td>2.500</td>
</tr>
<tr>
<td></td>
<td>Herbicida sector arándano y avellano</td>
<td>Ago</td>
<td>0.25 5.000</td>
<td>Roundup</td>
<td>60 cc</td>
<td>275</td>
</tr>
<tr>
<td></td>
<td>Hoyadura arándano</td>
<td>Ago</td>
<td>1.5 5.000</td>
<td></td>
<td></td>
<td>7.500</td>
</tr>
<tr>
<td></td>
<td>Plantación arándano</td>
<td>Ago</td>
<td>1 5.000</td>
<td>PlantaS</td>
<td>120 Un</td>
<td>76.228</td>
</tr>
<tr>
<td></td>
<td>Riego plantación</td>
<td>Ago</td>
<td>0.25 5.000</td>
<td></td>
<td></td>
<td>1.250</td>
</tr>
<tr>
<td></td>
<td>Hoyadura arándano</td>
<td>Ago</td>
<td>2 5.000</td>
<td></td>
<td></td>
<td>10.000</td>
</tr>
<tr>
<td></td>
<td>Materia orgánica arándano</td>
<td>Ago</td>
<td>1 5.000</td>
<td>Aserrín</td>
<td>6 m³</td>
<td>12.000</td>
</tr>
<tr>
<td></td>
<td>Plantación arándano</td>
<td>Ago</td>
<td>2 5.000</td>
<td>Plantas</td>
<td>180 Un</td>
<td>192.780</td>
</tr>
<tr>
<td></td>
<td>Riego plantación</td>
<td>Sep</td>
<td>0.25 5.000</td>
<td></td>
<td></td>
<td>1.250</td>
</tr>
<tr>
<td></td>
<td>Subtotal establecimiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>368.520</td>
</tr>
<tr>
<td></td>
<td>Manejo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Herbicida pradera</td>
<td>Jul</td>
<td>0.4 5.000</td>
<td></td>
<td>MCPA (Sal)</td>
<td>16 cc</td>
</tr>
<tr>
<td></td>
<td>Corte de pradera</td>
<td>Sep</td>
<td>0.2 12.000</td>
<td></td>
<td></td>
<td>2.400</td>
</tr>
<tr>
<td></td>
<td>Confección desagüe</td>
<td>Oct</td>
<td>1 5.000</td>
<td></td>
<td></td>
<td>5.000</td>
</tr>
<tr>
<td></td>
<td>Riego</td>
<td>Oct</td>
<td>0.27 5.000</td>
<td></td>
<td></td>
<td>1.350</td>
</tr>
<tr>
<td></td>
<td>Cortar pradera</td>
<td>Oct</td>
<td>0.2 12.000</td>
<td></td>
<td></td>
<td>2.400</td>
</tr>
<tr>
<td></td>
<td>Cortar pradera</td>
<td>Nov</td>
<td>0.4 12.000</td>
<td></td>
<td></td>
<td>4.800</td>
</tr>
<tr>
<td></td>
<td>Apretarar</td>
<td>Nov</td>
<td>2 5.000</td>
<td></td>
<td></td>
<td>10.000</td>
</tr>
<tr>
<td></td>
<td>Riego</td>
<td>Nov</td>
<td>0.81 5.000</td>
<td></td>
<td></td>
<td>4.050</td>
</tr>
<tr>
<td></td>
<td>Herbicida arándano y avellano</td>
<td>dic</td>
<td>0.4 5.000</td>
<td></td>
<td>Basta</td>
<td>116 cc</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Goal</td>
<td>29 cc</td>
</tr>
<tr>
<td>Commodity</td>
<td>Month</td>
<td>Quantity</td>
<td>Unit</td>
<td>Price 1</td>
<td>Price 2</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>-------</td>
<td>----------</td>
<td>------</td>
<td>---------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Fol-wet</td>
<td>18</td>
<td>cc</td>
<td>146</td>
<td>146</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfato de amonio</td>
<td>232</td>
<td>g</td>
<td>75</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riego</td>
<td>Dic</td>
<td>0.81</td>
<td>5.000</td>
<td>4.050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Dic</td>
<td>0.4</td>
<td>12.000</td>
<td>4.800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fertilizante arándano</td>
<td>Dic</td>
<td>0.2</td>
<td>5.000</td>
<td>232</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fertilizante arándano</td>
<td>Ene</td>
<td>0.2</td>
<td>5.000</td>
<td>232</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insecticida avellano</td>
<td>Ene</td>
<td>0.2</td>
<td>5.000</td>
<td>232</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Ene</td>
<td>0.4</td>
<td>12.000</td>
<td>4.800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fertilizante avellano</td>
<td>Ene</td>
<td>0.2</td>
<td>5.000</td>
<td>232</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fertilizante arándano</td>
<td>Ene</td>
<td>0.2</td>
<td>5.000</td>
<td>232</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herbicida arándano</td>
<td>Ene</td>
<td>0.2</td>
<td>5.000</td>
<td>232</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fertilizante arándano</td>
<td>Ene</td>
<td>0.2</td>
<td>5.000</td>
<td>232</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Ene</td>
<td>0.4</td>
<td>12.000</td>
<td>4.800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fertilizante arándano</td>
<td>Ene</td>
<td>0.2</td>
<td>5.000</td>
<td>232</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fertilizante arándano</td>
<td>Ene</td>
<td>0.2</td>
<td>5.000</td>
<td>232</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herbicida arándano</td>
<td>Ene</td>
<td>0.2</td>
<td>5.000</td>
<td>232</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herbicida arándano</td>
<td>Ene</td>
<td>0.2</td>
<td>5.000</td>
<td>232</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materia orgánica</td>
<td>Feb</td>
<td>0.5</td>
<td>5.000</td>
<td>4.800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riego</td>
<td>Feb</td>
<td>0.81</td>
<td>5.000</td>
<td>4.050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Feb</td>
<td>0.4</td>
<td>12.000</td>
<td>4.800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arranca pasto</td>
<td>Feb</td>
<td>2</td>
<td>5.000</td>
<td>10.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riego</td>
<td>Feb</td>
<td>0.81</td>
<td>5.000</td>
<td>4.050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal mantención</td>
<td></td>
<td></td>
<td></td>
<td>96.890</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>465.410</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Jornadas

<table>
<thead>
<tr>
<th>Labores</th>
<th>Hombre</th>
<th>Tractor c/impl.</th>
<th>Animal</th>
<th>Insumos</th>
<th>Total c/d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparación suelo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aradura vertedera</td>
<td>May</td>
<td>0,35</td>
<td>8.000</td>
<td></td>
<td>2.800</td>
</tr>
<tr>
<td>Rastraje disco</td>
<td>May</td>
<td>0,72</td>
<td>8.000</td>
<td></td>
<td>5.760</td>
</tr>
<tr>
<td>Siembra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acarreo semillas y fertilizantes</td>
<td>May 0,08</td>
<td>5.000</td>
<td></td>
<td></td>
<td>400</td>
</tr>
<tr>
<td>Aplicación fertilizante</td>
<td>May</td>
<td>0,15</td>
<td>5.000</td>
<td>Urea</td>
<td>2,474</td>
</tr>
<tr>
<td>Siembra pradera</td>
<td>May</td>
<td>0,15</td>
<td>5.000</td>
<td>Semilla</td>
<td>4,687</td>
</tr>
<tr>
<td>Tapado</td>
<td>May</td>
<td>0,18</td>
<td>5.000</td>
<td>0,5</td>
<td>3,400</td>
</tr>
<tr>
<td>Plantación</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herbicida árboles y arbustos</td>
<td>Ago</td>
<td>0,25</td>
<td>5.000</td>
<td>Roundup</td>
<td>1,708</td>
</tr>
<tr>
<td>Hoyadura álamos</td>
<td>Ago</td>
<td>0,25</td>
<td>5.000</td>
<td></td>
<td>1,250</td>
</tr>
<tr>
<td>Plantación álamos</td>
<td>Ago</td>
<td>0,5</td>
<td>6.000</td>
<td>Plantas</td>
<td>8,800</td>
</tr>
<tr>
<td>Plantación sauce mimbre</td>
<td>Ago</td>
<td>1</td>
<td>5.000</td>
<td>Estacas</td>
<td>29,000</td>
</tr>
<tr>
<td>Riego plantación</td>
<td>Ago</td>
<td>1</td>
<td>5.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plantación y riego eucalipto</td>
<td>Oct</td>
<td>0,5</td>
<td>5.000</td>
<td>Plantas</td>
<td>7,260</td>
</tr>
<tr>
<td>Subtotal establecimiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>73,761</td>
</tr>
<tr>
<td>Manejo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herbicida pradera</td>
<td>Ago</td>
<td>0,4</td>
<td>5.000</td>
<td>MCPA (Sall)</td>
<td>2,030</td>
</tr>
<tr>
<td>Tutor arbustos</td>
<td>Ago</td>
<td>0,5</td>
<td>5.000</td>
<td></td>
<td>2,500</td>
</tr>
<tr>
<td>Corte de pradera</td>
<td>Sep</td>
<td>5.000</td>
<td>0,1</td>
<td>12,000</td>
<td>1,200</td>
</tr>
<tr>
<td>Resiembra pradera</td>
<td>Sep</td>
<td>0,1</td>
<td>5.000</td>
<td></td>
<td>500</td>
</tr>
<tr>
<td>Tapado Semilla</td>
<td>Sep</td>
<td>0,2</td>
<td>5.000</td>
<td>0,2</td>
<td>2,600</td>
</tr>
<tr>
<td>Herbicida árboles y arbustos</td>
<td>Sep</td>
<td>0,4</td>
<td>5.000</td>
<td>Gramoxone</td>
<td>2,456</td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Oct</td>
<td>0,1</td>
<td>12,000</td>
<td></td>
<td>1,200</td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Nov</td>
<td>0,2</td>
<td>12,000</td>
<td></td>
<td>2,400</td>
</tr>
<tr>
<td>Apretilar</td>
<td>Nov</td>
<td>3</td>
<td>5.000</td>
<td></td>
<td>15,000</td>
</tr>
<tr>
<td>Riego motobomba</td>
<td>Nov</td>
<td>1</td>
<td>5.000</td>
<td>Combustible</td>
<td>7,500</td>
</tr>
<tr>
<td>Riego</td>
<td>Nov</td>
<td>0,23</td>
<td>5.000</td>
<td></td>
<td>1,150</td>
</tr>
<tr>
<td>Confección desagüe</td>
<td>Nov</td>
<td>2</td>
<td>5.000</td>
<td></td>
<td>10,000</td>
</tr>
<tr>
<td>Raspar en sector arbusto</td>
<td>Nov</td>
<td>1</td>
<td>5.000</td>
<td></td>
<td>5,000</td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Dic</td>
<td>0,2</td>
<td>12,000</td>
<td></td>
<td>2,400</td>
</tr>
<tr>
<td>Riego</td>
<td>Dic</td>
<td>0,46</td>
<td>5.000</td>
<td></td>
<td>2,300</td>
</tr>
<tr>
<td>Herbicida árboles y arbustos</td>
<td>Ene</td>
<td>0,2</td>
<td>5.000</td>
<td>Basta</td>
<td>2,335</td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Ene</td>
<td>0,2</td>
<td>12,000</td>
<td></td>
<td>2,400</td>
</tr>
<tr>
<td>Riego</td>
<td>Ene</td>
<td>0,92</td>
<td>5.000</td>
<td></td>
<td>4,600</td>
</tr>
<tr>
<td>Limpia malezas</td>
<td>Feb</td>
<td>4</td>
<td>5.000</td>
<td></td>
<td>20,000</td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Feb</td>
<td>0,2</td>
<td>12,000</td>
<td></td>
<td>2,400</td>
</tr>
<tr>
<td>Riego</td>
<td>Feb</td>
<td>0,92</td>
<td>5.000</td>
<td></td>
<td>4,600</td>
</tr>
<tr>
<td>Subtotal mantención</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>87,923</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>161,684</td>
</tr>
</tbody>
</table>
Uso de Biofiltros para mejorar la calidad del agua de riego

Localidad: La Turbina, Chimbarongo

- **BF1 Pradera**: 1000 m²
- **BF1 Eucalipto-Alamo-Sauce mimbre**: 1400 m²
- **Sup. total m²**: 2400

Jornadas de Labores

<table>
<thead>
<tr>
<th>Labores</th>
<th>Hom.</th>
<th>Tractor c/impl.</th>
<th>Animal</th>
<th>Insumos</th>
<th>Total c/d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparación suelo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aradura</td>
<td>May</td>
<td>2</td>
<td>8.000</td>
<td></td>
<td>16.000</td>
</tr>
<tr>
<td>Rastraje disco</td>
<td>May</td>
<td>1</td>
<td>8.000</td>
<td></td>
<td>8.000</td>
</tr>
<tr>
<td>Pala</td>
<td>May</td>
<td>1</td>
<td>6.000</td>
<td></td>
<td>6.000</td>
</tr>
<tr>
<td>Siembra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acarreo semillas y fertilizantes</td>
<td>May</td>
<td>0,08</td>
<td>5.000</td>
<td></td>
<td>400</td>
</tr>
<tr>
<td>Aplicación fertilizante</td>
<td>May</td>
<td>0,32</td>
<td>5.000</td>
<td>Urea</td>
<td>7.270</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SFT</td>
<td>4.020</td>
</tr>
<tr>
<td>Siembra pradera</td>
<td>May</td>
<td>0,16</td>
<td>5.000</td>
<td>Semilla</td>
<td>13.750</td>
</tr>
<tr>
<td>Tapado</td>
<td>May</td>
<td>0,32</td>
<td>5.000</td>
<td>0,5</td>
<td>4.100</td>
</tr>
<tr>
<td>Plantación</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoyadura arándano</td>
<td>Jul</td>
<td>3</td>
<td>5.000</td>
<td></td>
<td>15.000</td>
</tr>
<tr>
<td>Materia orgánica arándano</td>
<td>Jul</td>
<td>2</td>
<td>5.000</td>
<td>2</td>
<td>52.083</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aserrín</td>
<td>92.083</td>
</tr>
<tr>
<td>Plantación arándano</td>
<td>Jul</td>
<td>4</td>
<td>5.000</td>
<td></td>
<td>72.000</td>
</tr>
<tr>
<td>Subtotal establecimiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>886.623</td>
</tr>
<tr>
<td>Manejo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herbicida pradera</td>
<td>Sep</td>
<td>0,4</td>
<td>5.000</td>
<td>MCPA (Sal)</td>
<td>2.122</td>
</tr>
<tr>
<td>Corte de pradera</td>
<td>Sep</td>
<td>0,4</td>
<td>12.000</td>
<td></td>
<td>4.800</td>
</tr>
<tr>
<td>Talud desague</td>
<td>Oct</td>
<td>1</td>
<td>5.000</td>
<td></td>
<td>5.000</td>
</tr>
<tr>
<td>Apretilar</td>
<td>Oct</td>
<td>2</td>
<td>5.000</td>
<td></td>
<td>10.000</td>
</tr>
<tr>
<td>Riego</td>
<td>Oct</td>
<td>0,4</td>
<td>5.000</td>
<td></td>
<td>2.000</td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Oct</td>
<td>0,4</td>
<td>12.000</td>
<td></td>
<td>4.800</td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Nov</td>
<td>0,8</td>
<td>12.000</td>
<td></td>
<td>9.600</td>
</tr>
<tr>
<td>Rastra y pala arándanos</td>
<td>Nov</td>
<td>1</td>
<td>9.618</td>
<td></td>
<td>9.618</td>
</tr>
<tr>
<td>Arranca malezas arándano</td>
<td>Nov</td>
<td>1</td>
<td>5.000</td>
<td></td>
<td>5.000</td>
</tr>
<tr>
<td>Materia orgánica arándano</td>
<td>Nov</td>
<td>2</td>
<td>5.000</td>
<td>2</td>
<td>60.000</td>
</tr>
<tr>
<td>Riego</td>
<td>Nov</td>
<td>0,4</td>
<td>5.000</td>
<td></td>
<td>2.000</td>
</tr>
<tr>
<td>Fertilizante arándano</td>
<td>Nov</td>
<td>2</td>
<td>5.000</td>
<td>Urea</td>
<td>12.199</td>
</tr>
<tr>
<td>Fertilizante arándano foliar</td>
<td>Nov</td>
<td>0,5</td>
<td>5.000</td>
<td>Terrasorb</td>
<td>5.168</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Profert</td>
<td>7.242</td>
</tr>
<tr>
<td>Cortar pradera foliar</td>
<td>Dec</td>
<td>0,8</td>
<td>12.000</td>
<td></td>
<td>9.600</td>
</tr>
<tr>
<td>Riego</td>
<td>Dec</td>
<td>0,4</td>
<td>5.000</td>
<td></td>
<td>2.000</td>
</tr>
<tr>
<td>Fertilizante foliar arándano</td>
<td>Dec</td>
<td>0,5</td>
<td>5.000</td>
<td>Terrasorb</td>
<td>5.168</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Profert</td>
<td>7.242</td>
</tr>
<tr>
<td>Fertilizante arándano</td>
<td>Dec</td>
<td>1</td>
<td>5.000</td>
<td>Urea</td>
<td>13.637</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Goal</td>
<td>242</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fol-wet</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sulfato de amonio</td>
<td>28</td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Ene</td>
<td>0,8</td>
<td>12.000</td>
<td></td>
<td>9.600</td>
</tr>
<tr>
<td>Apretilar</td>
<td>Ene</td>
<td>2</td>
<td>5.000</td>
<td></td>
<td>10.000</td>
</tr>
<tr>
<td>Fertilizante arándano</td>
<td>Ene</td>
<td>2</td>
<td>5.000</td>
<td>Urea</td>
<td>27.274</td>
</tr>
<tr>
<td>Fertilizante arándano foliar</td>
<td>Dec</td>
<td>0,25</td>
<td>5.000</td>
<td>Terrasorb</td>
<td>2.584</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Goal</td>
<td>242</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fol-wet</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Roundup</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sulfato de amonio</td>
<td>28</td>
</tr>
<tr>
<td>Materia orgánica arándano</td>
<td>Feb</td>
<td>2</td>
<td>5.000</td>
<td>2</td>
<td>40.000</td>
</tr>
<tr>
<td>Fertilizante arándano</td>
<td>Feb</td>
<td>1</td>
<td>5.000</td>
<td>Urea</td>
<td>33.790</td>
</tr>
<tr>
<td>Limpia malezas</td>
<td>Feb</td>
<td>2</td>
<td>5.000</td>
<td></td>
<td>10.000</td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Feb</td>
<td>0,8</td>
<td>12.000</td>
<td></td>
<td>9.600</td>
</tr>
<tr>
<td>Riego</td>
<td>Feb</td>
<td>0,4</td>
<td>5.000</td>
<td></td>
<td>2.000</td>
</tr>
<tr>
<td>Subtotal mantenimiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>313.861</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,200.284</td>
</tr>
</tbody>
</table>
Jornadas

<table>
<thead>
<tr>
<th>Labores</th>
<th>Hombre</th>
<th>Tractor c/impl.</th>
<th>Animal</th>
<th>Insumos</th>
<th>Total c/d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparación suelo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aradura May</td>
<td>0,55</td>
<td>8.000</td>
<td></td>
<td></td>
<td>4.400</td>
</tr>
<tr>
<td>Rastraje disco May</td>
<td>1</td>
<td>8.000</td>
<td></td>
<td></td>
<td>8.000</td>
</tr>
<tr>
<td>Pala May</td>
<td>1</td>
<td>6.000</td>
<td></td>
<td></td>
<td>6.000</td>
</tr>
<tr>
<td>Siembra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acarreo semillas y fertilizantes May</td>
<td>0,08</td>
<td>5.000</td>
<td></td>
<td></td>
<td>400</td>
</tr>
<tr>
<td>Aplicación fertilizante May</td>
<td>0,15</td>
<td>5.000</td>
<td></td>
<td>Urea 5,4 kg 315</td>
<td>2.451</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SFT 3,6 kg 335</td>
<td>1.206</td>
</tr>
<tr>
<td>Siembra pradera May</td>
<td>0,15</td>
<td>5.000</td>
<td></td>
<td>Semilla 2,1 kg 1.850</td>
<td>4.835</td>
</tr>
<tr>
<td>Tapado May</td>
<td>0,36</td>
<td>5.000</td>
<td>0,5</td>
<td>5000</td>
<td>4.300</td>
</tr>
<tr>
<td>Resiembra y tapado Jun</td>
<td>0,5</td>
<td>5.000</td>
<td>0,5</td>
<td>5000</td>
<td>15.878</td>
</tr>
<tr>
<td>Plantación</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoyadura arándano Ago</td>
<td>2</td>
<td>5.000</td>
<td></td>
<td></td>
<td>10.000</td>
</tr>
<tr>
<td>Materia orgánica arándano</td>
<td>2</td>
<td>5.000</td>
<td></td>
<td></td>
<td>17.000</td>
</tr>
<tr>
<td>Plantación arándano Ago</td>
<td>2</td>
<td>5.000</td>
<td>Plantas 180 Un 216.000</td>
<td>226.000</td>
<td></td>
</tr>
<tr>
<td>Hoyadura Olivo</td>
<td>1</td>
<td>5.000</td>
<td></td>
<td></td>
<td>5.000</td>
</tr>
<tr>
<td>Plantación Olivo Ago</td>
<td>0,75</td>
<td>5.000</td>
<td>Plantas 90 Un 180.000</td>
<td>183.750</td>
<td></td>
</tr>
<tr>
<td>Riego plantación Ago</td>
<td>1</td>
<td>5.000</td>
<td></td>
<td></td>
<td>5.000</td>
</tr>
<tr>
<td>Subtotal establecimiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>594.020</td>
</tr>
<tr>
<td>Manejo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herbicida aráboles y arbustos Jul</td>
<td>0,3</td>
<td>5.000</td>
<td>Roundup 201 cc 921</td>
<td>2.421</td>
<td></td>
</tr>
<tr>
<td>Desagüe Ago</td>
<td>2</td>
<td>5.000</td>
<td></td>
<td></td>
<td>10.000</td>
</tr>
<tr>
<td>Herbicida pradera Ago</td>
<td>0,2</td>
<td>5.000</td>
<td>MCPA (Sal) 17 cc 65</td>
<td>1.065</td>
<td></td>
</tr>
<tr>
<td>Corte de pradera Sep</td>
<td>0,2</td>
<td>12.000</td>
<td></td>
<td></td>
<td>2.400</td>
</tr>
<tr>
<td>Riego Oct</td>
<td>0,5</td>
<td>5.000</td>
<td></td>
<td></td>
<td>2.500</td>
</tr>
<tr>
<td>Cortar pradera Oct</td>
<td>25,292</td>
<td>0,2</td>
<td>12.000</td>
<td></td>
<td>2.400</td>
</tr>
<tr>
<td>Cortar pradera Nov</td>
<td>50,584</td>
<td>0,4</td>
<td>12.000</td>
<td></td>
<td>4.800</td>
</tr>
<tr>
<td>Riego Nov</td>
<td>0,2</td>
<td>5.000</td>
<td></td>
<td></td>
<td>1.000</td>
</tr>
<tr>
<td>Apretilar Nov</td>
<td>2</td>
<td>5.000</td>
<td></td>
<td></td>
<td>10.000</td>
</tr>
<tr>
<td>Herbicida pradera Nov</td>
<td>0,2</td>
<td>5.000</td>
<td>Lontrel 50 cc 1.188</td>
<td>2.198</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mcpa 168 cc 638</td>
<td>638</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fol-weet 25 cc 203</td>
<td>203</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sulfato de amonio 336 g 111</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Basta 400 cc 3.560</td>
<td>4.810</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fol-soft 37 cc 244</td>
<td>244</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sulfato de amonio 336 g 111</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>Cortar pradera Dic</td>
<td>0,4</td>
<td>12.000</td>
<td></td>
<td></td>
<td>4.800</td>
</tr>
<tr>
<td>Riego Dic</td>
<td>0,3</td>
<td>5.000</td>
<td></td>
<td></td>
<td>1.500</td>
</tr>
<tr>
<td>Herbicida aráboles y arbustos Dic</td>
<td>0,25</td>
<td>5.000</td>
<td>Basta 40 cc 356</td>
<td>1.806</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Goal 50 cc 1.100</td>
<td>1.100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fol-soft 30 cc 244</td>
<td>244</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Roundup 50 cc 229</td>
<td>229</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sulfato de amonio 400 g 132</td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>Fertilizante arándano Dic</td>
<td>0,2</td>
<td>5.000</td>
<td>Fosfato diamónico 5,4 g 1.145</td>
<td>2.145</td>
<td></td>
</tr>
<tr>
<td>Materia orgánica arándano y olivo Dic</td>
<td>1</td>
<td>5.000</td>
<td>Paja de trigo 22 fardo 13.090</td>
<td>18.090</td>
<td></td>
</tr>
</tbody>
</table>

Localidad: Liceo Agrícola El Carmen, San Fernando
BF1 Pradera 300 m²
BF1 Arándanos - Olivos 900 m²
Sup. total m²: 1200

-109-
Uso de Biofiltros para mejorar la calidad del agua de riego

<table>
<thead>
<tr>
<th>Servicio</th>
<th>Mes</th>
<th>Cantidad</th>
<th>Carga</th>
<th>Peso</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cortar pradera</td>
<td>Ene</td>
<td>0,4</td>
<td>12.000</td>
<td></td>
<td>4.800</td>
</tr>
<tr>
<td>Fertilizante arándano</td>
<td>Ene</td>
<td>0,5</td>
<td>5.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riego</td>
<td>Ene</td>
<td>0,3</td>
<td>5.000</td>
<td></td>
<td>1.500</td>
</tr>
<tr>
<td>Fertilizante olivo</td>
<td>Ene</td>
<td>0,2</td>
<td>5.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herbicida árboles y arbustos</td>
<td>Feb</td>
<td>0,25</td>
<td>5.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Feb</td>
<td>0,4</td>
<td>12.000</td>
<td></td>
<td>4.800</td>
</tr>
<tr>
<td>Riego</td>
<td>Feb</td>
<td>0,2</td>
<td>5.000</td>
<td></td>
<td>1.000</td>
</tr>
<tr>
<td>Subtotal mantenimiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>98.532</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>592.552</td>
</tr>
</tbody>
</table>

- **Fertilizante arándano Ene:** 0,5 5.000
- **Riego Ene:** 0,3 5.000
- **Fertilizante olivo Ene:** 0,2 5.000
- **Herbicida árboles y arbustos Feb:** 0,25 5.000
- **Cortar pradera Feb:** 0,4 12.000
- **Riego Feb:** 0,2 5.000

<table>
<thead>
<tr>
<th>Servicio</th>
<th>Peso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fosfato diamónico</td>
<td>16,2 kg 3.434 5.934</td>
</tr>
<tr>
<td>Úrea</td>
<td>7 kg 1.440 2.440</td>
</tr>
<tr>
<td>Basta</td>
<td>40 cc 356 1.606</td>
</tr>
<tr>
<td>Goal</td>
<td>50 cc 1.100 1.100</td>
</tr>
<tr>
<td>Fol-weet</td>
<td>30 cc 244 244</td>
</tr>
<tr>
<td>Roundup</td>
<td>50 cc 229 229</td>
</tr>
<tr>
<td>Sulfato de amonio</td>
<td>400 g 132 132</td>
</tr>
<tr>
<td>Sulfato de amonio</td>
<td>400 g 132 132</td>
</tr>
</tbody>
</table>

- **Riego Ene 0,3 5.000**
- **Fertilizante olivo Ene 0,2 5.000**
- **Herbicida árboles y arbustos Feb 0,25 5.000**
Localidad: Morza, Teno

BF1 Pradera
750 m²

BF1 Arándanos
330 m²

Sup. total m²:
1080

<table>
<thead>
<tr>
<th>Labores</th>
<th>Mes</th>
<th>Jornadas</th>
<th>Hombre</th>
<th>Horas</th>
<th>Tractor c/impl.</th>
<th>Animal</th>
<th>Insumos</th>
<th>Total c/d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparación suelo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aradura sincel</td>
<td>May</td>
<td>1,5</td>
<td>8.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.680</td>
</tr>
<tr>
<td>Rastraje disco</td>
<td>May</td>
<td>1,0</td>
<td>8.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.000</td>
</tr>
<tr>
<td>Pala</td>
<td>May</td>
<td>3,0</td>
<td>8.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18.000</td>
</tr>
<tr>
<td>Herbicida</td>
<td>Jun</td>
<td>0,2</td>
<td>5.000</td>
<td></td>
<td></td>
<td></td>
<td>MCPA (Sal) 30,0 cc 114</td>
<td>1,114</td>
</tr>
<tr>
<td>Sacado piedras</td>
<td>Jun</td>
<td>1,5</td>
<td>5.000</td>
<td>4,0</td>
<td>5.000</td>
<td></td>
<td></td>
<td>27.500</td>
</tr>
<tr>
<td>Siembra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acerro semillas y fertilizantes</td>
<td>Jun</td>
<td>0,1</td>
<td>5.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>500</td>
</tr>
<tr>
<td>Aplicación fertilizante</td>
<td>Jun</td>
<td>0,1</td>
<td>5.000</td>
<td></td>
<td></td>
<td></td>
<td>Urea 13,5 kg 315</td>
<td>4.753</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SFT 9,0 kg 335</td>
<td>3.015</td>
</tr>
<tr>
<td>Siembra pradera</td>
<td>Jun</td>
<td>0,1</td>
<td>5.000</td>
<td></td>
<td></td>
<td></td>
<td>Semilla 5,3 kg 1.850</td>
<td>10.305</td>
</tr>
<tr>
<td>Tapado</td>
<td>Jun</td>
<td>0,4</td>
<td>5.000</td>
<td>0,5</td>
<td>5.000</td>
<td></td>
<td></td>
<td>4.500</td>
</tr>
<tr>
<td>Resiembra pradera y tapado</td>
<td>Jun</td>
<td>0,7</td>
<td>5.000</td>
<td></td>
<td></td>
<td></td>
<td>Semilla 3,0 kg 5.550</td>
<td>9.050</td>
</tr>
<tr>
<td>Plantación</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riego plantación</td>
<td>Ago</td>
<td>0,5</td>
<td>5.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.500</td>
</tr>
<tr>
<td>Herbicida sector arándano</td>
<td>Sep</td>
<td>0,3</td>
<td>5.000</td>
<td></td>
<td></td>
<td></td>
<td>Roundup 60,0 cc 275</td>
<td>1.525</td>
</tr>
<tr>
<td>Hoyadura arándano</td>
<td>Oct</td>
<td>3,0</td>
<td>5.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15.000</td>
</tr>
<tr>
<td>Materia orgánica arándano</td>
<td>May</td>
<td>1,0</td>
<td>5.000</td>
<td>2,0</td>
<td>15.000</td>
<td></td>
<td>Aserrín 20,0 m3 40.000</td>
<td>75.000</td>
</tr>
<tr>
<td>Plantación arándano</td>
<td>Oct</td>
<td>2,0</td>
<td>5.000</td>
<td></td>
<td></td>
<td></td>
<td>Plantas 540,0 Un 462.240</td>
<td>472.240</td>
</tr>
<tr>
<td>Riego plantación</td>
<td>Oct</td>
<td>1,0</td>
<td>5.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.000</td>
</tr>
<tr>
<td>Subtotal establecimiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>669.589</td>
</tr>
<tr>
<td>Manejo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herbicida pradera</td>
<td>Sep</td>
<td>0,8</td>
<td>5.000</td>
<td></td>
<td></td>
<td></td>
<td>MCPA (Sal) 30,0 cc 114</td>
<td>3.864</td>
</tr>
<tr>
<td>Arranca de maleza en pradera</td>
<td>Sep</td>
<td>0,5</td>
<td>5.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.500</td>
</tr>
<tr>
<td>Riego</td>
<td>Oct</td>
<td>0,1</td>
<td>5.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>500</td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Oct</td>
<td>0,2</td>
<td>12.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.400</td>
</tr>
<tr>
<td>Apretilar</td>
<td>Oct</td>
<td>1,0</td>
<td>5.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.000</td>
</tr>
<tr>
<td>Limpia desagüe</td>
<td>Oct</td>
<td>1,0</td>
<td>5.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.000</td>
</tr>
<tr>
<td>Riego</td>
<td>Nov</td>
<td>0,3</td>
<td>5.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.500</td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Nov</td>
<td>0,4</td>
<td>12.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.800</td>
</tr>
<tr>
<td>Desmalezar arándano</td>
<td>Nov</td>
<td>2,0</td>
<td>5.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.000</td>
</tr>
<tr>
<td>Hoyadura y postura polines</td>
<td>Nov</td>
<td>1,0</td>
<td>5.000</td>
<td></td>
<td></td>
<td></td>
<td>Polines 25,0 ud 15.500</td>
<td>20.500</td>
</tr>
<tr>
<td>Alambrar</td>
<td>Nov</td>
<td>1,0</td>
<td>5.000</td>
<td></td>
<td></td>
<td></td>
<td>Alambre 16 7,0 kg 6.464</td>
<td>11.464</td>
</tr>
<tr>
<td>Engastar arándano</td>
<td>Nov</td>
<td>1,0</td>
<td>5.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.000</td>
</tr>
<tr>
<td>Desmalezar arándano</td>
<td>Dic</td>
<td>1,4</td>
<td>5.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.000</td>
</tr>
<tr>
<td>Fertilización pradera</td>
<td>Dic</td>
<td>0,2</td>
<td>5.000</td>
<td></td>
<td></td>
<td></td>
<td>Urea 14,0 kg 2.879</td>
<td>3.879</td>
</tr>
<tr>
<td>Replante arándano</td>
<td>Sep-Dic</td>
<td>1,5</td>
<td>5.000</td>
<td></td>
<td></td>
<td></td>
<td>Plants 60,0 Un 51.360</td>
<td>56.860</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Goal 7,0 cc 154</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fol-wet 5,0 cc 41</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Roundup 7,0 cc 32</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sulfato de amonio 96,0 g 19</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lontrel 120,0 cc 2.874</td>
<td>6.624</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MCPA 400,0 cc 1.520</td>
<td>1.520</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fol-weet 40,0 cc 324</td>
<td>324</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sulfato de amonio 1,0 kg 334</td>
<td>334</td>
</tr>
<tr>
<td>Riego</td>
<td>Dic</td>
<td>0,5</td>
<td>5.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.500</td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Dic</td>
<td>0,4</td>
<td>12.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.800</td>
</tr>
<tr>
<td>Uso de Biofiltros para mejorar la calidad del agua de riego</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fertilización arándano Dic 0,4 5.000</td>
<td>Fosfato diamónico 16,0 kg 3.392 5.392</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basfoliar ZN 30,0 g 85 85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fertilización arándano Ene 0,4 5.000</td>
<td>Urea 32,0 kg 6.580 8.580</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herbicida pradera Ene 0,8 5.000</td>
<td>Lontrel 120,0 cc 2.874 6.624</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MCPA 400,0 cc 1.520 1.520</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fol-wet 60,0 cc 487 487</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sulfato de amonio 1,0 kg 334 334</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cortar pradera Ene 0,4 1.200</td>
<td>Roundup 23,0 cc 105 105</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herbicida arándano Ene 0,4 5.000</td>
<td>Basta 135,0 cc 1.202 3.202</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Geal 23,0 cc 506 506</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fol-wet 14,0 cc 114 114</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sulfato de amonio 180,0 g 59 59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fertilización arándano Ene 0,6 5.000</td>
<td>Bayfolan 160,0 cc 352 3.352</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basfoliar ZN 160,0 g 346 346</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riego Ene 0,4 5.000</td>
<td>2.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fertilización arándano Ene 0,4 5.000</td>
<td>Urea 21,0 kg 4.318 6.318</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fertilización arándano Ene 0,4 5.000</td>
<td>Urea 26,0 kg 5.346 7.346</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cortar pradera Feb 0,4 12.000</td>
<td>4.800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fertilización arándano Feb 0,4 5.000</td>
<td>Fosfato diamónico 32,0 kg 6.784 8.784</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riego Feb 0,4 5.000</td>
<td>2.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal mantención</td>
<td>221.049</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>890.638</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Localidad: Tres Esquinas, Molina
BF1 Pradera \(240 \text{ m}^2\)
BF1 Arándanos \(560 \text{ m}^2\)
Sup. total m²: \(800\)

Jornadas

<table>
<thead>
<tr>
<th>Labores</th>
<th>Hombre</th>
<th>Tractor c/impl.</th>
<th>Animal</th>
<th>Insumos</th>
<th>Total c/d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mes</td>
<td>Jor</td>
<td>$ Horas</td>
<td>$ Jor</td>
<td>$ Tipo</td>
</tr>
<tr>
<td>Preparación suelo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aradoja</td>
<td>May</td>
<td>0.35</td>
<td>8.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rastraje disco</td>
<td>May</td>
<td>0.69</td>
<td>8.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pala</td>
<td>May</td>
<td>1</td>
<td>6.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siembra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abarroec semillas y fertilizantes</td>
<td>May</td>
<td>0.1</td>
<td>5.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aplicación fertilizante</td>
<td>May</td>
<td>0.1</td>
<td>5.000</td>
<td></td>
<td>Urea</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SFT</td>
</tr>
<tr>
<td>Siembra pradera</td>
<td>May</td>
<td>0.1</td>
<td>5.000</td>
<td></td>
<td>Semilla</td>
</tr>
<tr>
<td>Tapado</td>
<td>May</td>
<td>0.3</td>
<td>5.000</td>
<td>0.5</td>
<td>5.000</td>
</tr>
<tr>
<td>Construcción desagüe, siembra y tapado</td>
<td>Oct</td>
<td>0.3</td>
<td>5.000</td>
<td>1 7.500</td>
<td></td>
</tr>
<tr>
<td>Plantaición</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riego plantación</td>
<td>Ago</td>
<td>0.25</td>
<td>5.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoyadura y plantación eucalipto</td>
<td>Nov</td>
<td>8</td>
<td>5.000</td>
<td></td>
<td>Plantas</td>
</tr>
<tr>
<td>Riego eucalipto</td>
<td>Nov</td>
<td>1</td>
<td>5.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal establecimiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manejo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herbicida pradera</td>
<td>Ago</td>
<td>0.2</td>
<td>5.000</td>
<td></td>
<td>MCPA (sal)</td>
</tr>
<tr>
<td>Corte de pradera</td>
<td>Sep</td>
<td>0.1</td>
<td>12.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resiembra pradera</td>
<td>Oct</td>
<td>0.5</td>
<td>5.000</td>
<td>0.5</td>
<td>7.500</td>
</tr>
<tr>
<td>Riego</td>
<td>Oct</td>
<td>0.1</td>
<td>5.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Oct</td>
<td>0.1</td>
<td>12.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Nov</td>
<td>0.2</td>
<td>12.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riego</td>
<td>Nov</td>
<td>0.2</td>
<td>5.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apretilar</td>
<td>Nov</td>
<td>1</td>
<td>5.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herbicida eucalipto</td>
<td>Nov</td>
<td>0.3</td>
<td>5.000</td>
<td></td>
<td>Soal</td>
</tr>
<tr>
<td>Herbicida desagüe</td>
<td>Dic</td>
<td>0.2</td>
<td>5.000</td>
<td></td>
<td>Lontrel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MCPA (sal)</td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Dic</td>
<td>0.2</td>
<td>12.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riego</td>
<td>Dic</td>
<td>0.3</td>
<td>5.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aporca eucalipto y desmalezado</td>
<td>Dic</td>
<td>5</td>
<td>5.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replante eucalipto</td>
<td>Dic</td>
<td>0.25</td>
<td>5.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riego</td>
<td>Ene</td>
<td>0.3</td>
<td>5.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Ene</td>
<td>0.2</td>
<td>12.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desmalezado eucalipto</td>
<td>Ene</td>
<td>5</td>
<td>5.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Feb</td>
<td>0.2</td>
<td>12.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riego</td>
<td>Feb</td>
<td>0.3</td>
<td>5.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal mantenimiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Uso de Biofiltros para mejorar la calidad del agua de riego

Localidad: Lo Valdivia, Sagrada Familia

- **BF1 Pradera**: 560 m²
- **BF1 Arándanos**: 640 m²
- **Sup. total m²**: 1200

<table>
<thead>
<tr>
<th>Jornadas</th>
<th>Labores</th>
<th>Hombre</th>
<th>Tractor c/impl.</th>
<th>Animal</th>
<th>Insumos</th>
<th>Total c/d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Preparación suelo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aradura</td>
<td>May</td>
<td>1,1</td>
<td>8.000</td>
<td>8.800</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rastraje disco</td>
<td>May</td>
<td>2</td>
<td>8.000</td>
<td>16.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Siembra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acorre semillas y fertilizantes</td>
<td>May</td>
<td>0,07</td>
<td>5.000</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aplicación fertilizante</td>
<td>May</td>
<td>0,14</td>
<td>5.000</td>
<td>Urea 10,08 kg 315 1.015</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Siembra pradera</td>
<td>May</td>
<td>0,14</td>
<td>5.000</td>
<td>SFT 15,6 kg 335 335</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tapado</td>
<td>May</td>
<td>0,5</td>
<td>5.000</td>
<td>4.930</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resiembla pradera y tapado</td>
<td>Jun</td>
<td>0,18</td>
<td>5.000</td>
<td>1.213</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plantación</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Herbicida avellano</td>
<td>Ago</td>
<td>0,2</td>
<td>5.000</td>
<td>Roundup 160 cc 733 1.733</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hoyadura avellano europeo</td>
<td>Ago</td>
<td>4</td>
<td>5.000</td>
<td>20.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plantación avellano europeo</td>
<td>Ago</td>
<td>3</td>
<td>5.000</td>
<td>Plantas 320 Un 203.277 218.277</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riego avellano</td>
<td>Ago</td>
<td>0,5</td>
<td>5.000</td>
<td>4.375</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riego establecimiento</td>
<td></td>
<td></td>
<td></td>
<td>279.578</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manejo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Desagüe</td>
<td>Ago</td>
<td>9</td>
<td>5.000</td>
<td>46.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riego</td>
<td>Sep</td>
<td>0,5</td>
<td>5.000</td>
<td>2.500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riego</td>
<td>Oct</td>
<td>0,5</td>
<td>5.000</td>
<td>2.500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corte de pradera</td>
<td>Nov</td>
<td>0,4</td>
<td>12.000</td>
<td>4.800</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Raspar avellano</td>
<td>Nov</td>
<td>7</td>
<td>5.000</td>
<td>35.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riego</td>
<td>Nov</td>
<td>0,7</td>
<td>5.000</td>
<td>3.500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Herbicida avellano</td>
<td>Dic</td>
<td>0,2</td>
<td>5.000</td>
<td>Goal 40 cc 880 1.880</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fol-wet 24 cc 196 196</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sulfato de amonio 322 g 106 106</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Basta 242 cc 2.149 2.149</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apretar</td>
<td>Dic</td>
<td>2</td>
<td>5.000</td>
<td>10.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cortar pradera</td>
<td>Dic</td>
<td>0,4</td>
<td>12.000</td>
<td>4.800</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riego</td>
<td>Dic</td>
<td>0,2</td>
<td>5.000</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riego</td>
<td>Ene</td>
<td>0,4</td>
<td>5.000</td>
<td>2.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cortar pradera</td>
<td>Ene</td>
<td>0,4</td>
<td>12.000</td>
<td>4.800</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fertilización avellano</td>
<td>Ene</td>
<td>0,5</td>
<td>5.000</td>
<td>Urea 22 kg 4.524 7.024</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Herbicida avellano</td>
<td>Ene</td>
<td>0,2</td>
<td>5.000</td>
<td>Basta 242 cc 2.149 3.149</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Goal 40 cc 890 890</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fol-wet 24 cc 196 196</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Roundup 40 cc 181 181</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sulfato de amonio 322 g 106 106</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cortar pradera</td>
<td>Feb</td>
<td>0,4</td>
<td>12.000</td>
<td>4.800</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riego</td>
<td>Feb</td>
<td>0,3</td>
<td>5.000</td>
<td>1.500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subtotal manutención</td>
<td></td>
<td></td>
<td></td>
<td>139.440</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>419.018</td>
<td></td>
</tr>
</tbody>
</table>
Localidad: Los Niches, Curicó

BF1 Pradera	425 m²
BF1 Arándanos-Eucalipto-Sauce	850 m²
Sup. total m²:	1275

Jornadas

<table>
<thead>
<tr>
<th>Labores</th>
<th>Hombre</th>
<th>Tractor c/impl.</th>
<th>Animal</th>
<th>Insumos</th>
<th>Total c/d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparación suelo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limpia sector</td>
<td>Sep</td>
<td>3.3</td>
<td>5.000</td>
<td></td>
<td>16.500</td>
</tr>
<tr>
<td>Rastra (1)</td>
<td>Sep</td>
<td>0.2</td>
<td>8.000</td>
<td></td>
<td>1.600</td>
</tr>
<tr>
<td>Aradura (1)</td>
<td>Oct</td>
<td>0.3</td>
<td>8.000</td>
<td></td>
<td>2.400</td>
</tr>
<tr>
<td>Pala</td>
<td>Oct</td>
<td>0.3</td>
<td>6.000</td>
<td></td>
<td>1.800</td>
</tr>
<tr>
<td>Rastra (1)</td>
<td>Oct</td>
<td>0.2</td>
<td>8.000</td>
<td></td>
<td>1.600</td>
</tr>
</tbody>
</table>

Siembra

<table>
<thead>
<tr>
<th>Labores</th>
<th>Hombre</th>
<th>Tractor c/impl.</th>
<th>Animal</th>
<th>Insumos</th>
<th>Total c/d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acarreo semillas y fertilizantes</td>
<td>Oct</td>
<td>0.1</td>
<td>5.000</td>
<td></td>
<td>350</td>
</tr>
<tr>
<td>Aplicación fertilizante</td>
<td>Oct</td>
<td>0.1</td>
<td>5.000</td>
<td>Urea</td>
<td>3.060</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SFT</td>
<td>1.709</td>
</tr>
<tr>
<td>Siembra pradera</td>
<td>Oct</td>
<td>0.13</td>
<td>5.000</td>
<td>Semilla</td>
<td>6.154</td>
</tr>
<tr>
<td>Tapado</td>
<td>Oct</td>
<td>0.33</td>
<td>5.000</td>
<td>0.5</td>
<td>4.150</td>
</tr>
</tbody>
</table>

Plantación

<table>
<thead>
<tr>
<th>Labores</th>
<th>Hombre</th>
<th>Tractor c/impl.</th>
<th>Animal</th>
<th>Insumos</th>
<th>Total c/d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hoyadura y plantación álamo</td>
<td>Oct</td>
<td>0.5</td>
<td>5.000</td>
<td>Plantas</td>
<td>9.700</td>
</tr>
<tr>
<td>Plantación sauce</td>
<td>Oct</td>
<td>2</td>
<td>5.000</td>
<td>Estacas</td>
<td>13.600</td>
</tr>
<tr>
<td>Riego</td>
<td>Oct</td>
<td>1.5</td>
<td>5.000</td>
<td></td>
<td>7.500</td>
</tr>
<tr>
<td>Hoyadura y plantación eucalipto</td>
<td>Oct</td>
<td>0.3</td>
<td>5.000</td>
<td>Plantas</td>
<td>6.600</td>
</tr>
</tbody>
</table>

Subtotal establecimiento

| | 76.722 |

Manejo

<table>
<thead>
<tr>
<th>Labores</th>
<th>Hombre</th>
<th>Tractor c/impl.</th>
<th>Animal</th>
<th>Insumos</th>
<th>Total c/d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desagüe</td>
<td>Oct</td>
<td>2</td>
<td>5.000</td>
<td></td>
<td>10.000</td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Nov</td>
<td>0.2</td>
<td>12.000</td>
<td></td>
<td>2.400</td>
</tr>
<tr>
<td>Herbicida pradera</td>
<td>Dic</td>
<td>0.2</td>
<td>5.000</td>
<td>Lontrel</td>
<td>2.104</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fol-wet</td>
<td>380</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sulfato de amonio</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Acido acético</td>
<td>38</td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Dic</td>
<td>0.2</td>
<td>12.000</td>
<td></td>
<td>2.400</td>
</tr>
<tr>
<td>Apretilar</td>
<td>Dic</td>
<td>1.5</td>
<td>5.000</td>
<td></td>
<td>7.500</td>
</tr>
<tr>
<td>Riego</td>
<td>Dic</td>
<td>0.5</td>
<td>5.000</td>
<td></td>
<td>2.500</td>
</tr>
<tr>
<td>Herbicida árboles y arbustos</td>
<td>Dic</td>
<td>0.2</td>
<td>5.000</td>
<td>Basta</td>
<td>2.433</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Goal</td>
<td>885</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fol-weet</td>
<td>196</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Roundup</td>
<td>183</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sulfato de amonio</td>
<td>106</td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Ene</td>
<td>0.4</td>
<td>12.000</td>
<td></td>
<td>4.800</td>
</tr>
<tr>
<td>Herbicida árboles y arbustos</td>
<td>Feb</td>
<td>0.2</td>
<td>5.000</td>
<td>Basta</td>
<td>3.149</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Goal</td>
<td>885</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fol-weet</td>
<td>196</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Roundup</td>
<td>183</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sulfato de amonio</td>
<td>106</td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Feb</td>
<td>0.4</td>
<td>12.000</td>
<td></td>
<td>4.800</td>
</tr>
</tbody>
</table>

Subtotal mantención

| | 45.347 |

Total

| | 122.069 |
FICHAS TÉCNICAS PARA BIOFILTROS CONFORMADOS SOLAMENTE POR UNA FRANJA DE PASTO

Localidad: Chumaco, Requinoa
Sup. BF2: 288 m²

<table>
<thead>
<tr>
<th>Jornadas</th>
<th>Hombre</th>
<th>Tractor c/impl.</th>
<th>Animal</th>
<th>Insumos</th>
<th>Total c/d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mes</td>
<td>Jor</td>
<td>Horas</td>
<td>Jor</td>
<td>$</td>
</tr>
<tr>
<td>Preparación suelo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cortar pasto para</td>
<td>May</td>
<td>0.21</td>
<td>5.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>preparación</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sacar piedras y restos</td>
<td>May</td>
<td>0.21</td>
<td>5.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>orgánicos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aradura sincel</td>
<td>May</td>
<td>0.08</td>
<td>8.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rastaje disco</td>
<td>May</td>
<td>0.11</td>
<td>8.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pala tractor</td>
<td>May</td>
<td>0.11</td>
<td>8.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emparejar a pala</td>
<td>May</td>
<td>0.21</td>
<td>5.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siembra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aproveche semillas y</td>
<td>May</td>
<td>0.21</td>
<td>5.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fertilizantes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aplicación fertilizante</td>
<td>May</td>
<td>0.04</td>
<td>5.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urea</td>
<td>May</td>
<td>0.04</td>
<td>5.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SFT</td>
<td>May</td>
<td>0.04</td>
<td>5.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siembra pradera</td>
<td>May</td>
<td>0.04</td>
<td>5.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tapado</td>
<td>May</td>
<td>0.1</td>
<td>5.000</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Subtotal establecimiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Manejo

<table>
<thead>
<tr>
<th>Jornadas</th>
<th>Hombre</th>
<th>Tractor c/impl.</th>
<th>Animal</th>
<th>Insumos</th>
<th>Total c/d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herbicida pradera</td>
<td>Jul</td>
<td>0.1</td>
<td>5.000</td>
<td></td>
<td>MCPA (Sal)</td>
</tr>
<tr>
<td>Corte de pradera</td>
<td>Sep</td>
<td>0.2</td>
<td>12.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arranca malezas</td>
<td>sep</td>
<td>0.1</td>
<td>5.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confección desagüe</td>
<td>Oct</td>
<td>0.2</td>
<td>5.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riego</td>
<td>Oct</td>
<td>0.1</td>
<td>5.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Oct</td>
<td>0.2</td>
<td>12.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Nov</td>
<td>0.4</td>
<td>5.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apretar</td>
<td>Nov</td>
<td>0.4</td>
<td>5.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riego</td>
<td>Nov</td>
<td>0.2</td>
<td>5.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riego</td>
<td>Dec</td>
<td>0.2</td>
<td>5.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Dec</td>
<td>0.4</td>
<td>12.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Ene</td>
<td>0.4</td>
<td>12.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riego</td>
<td>Ene</td>
<td>0.2</td>
<td>5.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Feb</td>
<td>0.4</td>
<td>12.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riego</td>
<td>Feb</td>
<td>0.2</td>
<td>5.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal mantención</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Localidad: Pichidegua

Sup. BF2 304 m²

<table>
<thead>
<tr>
<th>Jornadas</th>
<th>Hombre</th>
<th>Tractor c/impl.</th>
<th>Animal</th>
<th>Insumos</th>
<th>Total c/d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mes</td>
<td>Jor $</td>
<td>Horas $</td>
<td>Jor $</td>
<td>Tipo</td>
</tr>
<tr>
<td>Preparación suelo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aradura vertedera</td>
<td>May</td>
<td>0,09975</td>
<td>8.000</td>
<td>798</td>
<td></td>
</tr>
<tr>
<td>Rastraje disco</td>
<td>May</td>
<td>0,2052</td>
<td>8.000</td>
<td>1.642</td>
<td></td>
</tr>
<tr>
<td>Siembra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acarreo semillas y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fertilizantes</td>
<td>May</td>
<td>0,03</td>
<td>5.000</td>
<td>143</td>
<td></td>
</tr>
<tr>
<td>Aplicación fertilizante</td>
<td>May</td>
<td>0,1</td>
<td>5.000</td>
<td>Urea 5,472 kg</td>
<td>315</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SFT 3,648 kg</td>
<td>337</td>
</tr>
<tr>
<td>Siembra pradera</td>
<td>May</td>
<td>0,1</td>
<td>5.000</td>
<td>Semilla 2,128 kg</td>
<td>1.850</td>
</tr>
<tr>
<td>Tapado</td>
<td>May</td>
<td>0,1</td>
<td>5.000</td>
<td>0,5</td>
<td>5.000</td>
</tr>
<tr>
<td>Subtotal establecimiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manejo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herbicida pradera</td>
<td>Ago</td>
<td>0,11</td>
<td>5.000</td>
<td>MCPA (Sal) 8 cc</td>
<td>30</td>
</tr>
<tr>
<td>Corte de pradera</td>
<td>Sep</td>
<td>0,2</td>
<td>12.000</td>
<td>2.400</td>
<td></td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Oct</td>
<td>0,4</td>
<td>12.000</td>
<td>4.800</td>
<td></td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Nov</td>
<td>0,4</td>
<td>12.000</td>
<td>4.800</td>
<td></td>
</tr>
<tr>
<td>Apretarir</td>
<td>Nov</td>
<td>0,86</td>
<td>5.000</td>
<td>4.286</td>
<td></td>
</tr>
<tr>
<td>Riego motobomba</td>
<td>Nov</td>
<td>0,29</td>
<td>5.000</td>
<td>1.429</td>
<td></td>
</tr>
<tr>
<td>Riego</td>
<td>Nov</td>
<td>0,07</td>
<td>5.000</td>
<td>329</td>
<td></td>
</tr>
<tr>
<td>Confección desagüe</td>
<td>Nov</td>
<td>0,57</td>
<td>5.000</td>
<td>2.857</td>
<td></td>
</tr>
<tr>
<td>Raspar en sector arbusto</td>
<td>Nov</td>
<td>1,00</td>
<td>5.000</td>
<td>5.000</td>
<td></td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Dic</td>
<td>0,4</td>
<td>12.000</td>
<td>4.800</td>
<td></td>
</tr>
<tr>
<td>Riego</td>
<td>Dic</td>
<td>0,13</td>
<td>5.000</td>
<td>857</td>
<td></td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Ene</td>
<td>0,4</td>
<td>12.000</td>
<td>4.800</td>
<td></td>
</tr>
<tr>
<td>Riego</td>
<td>Ene</td>
<td>0,26</td>
<td>5.000</td>
<td>1.314</td>
<td></td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Feb</td>
<td>0,4</td>
<td>12.000</td>
<td>4.800</td>
<td></td>
</tr>
<tr>
<td>Riego</td>
<td>Feb</td>
<td>0,26</td>
<td>5.000</td>
<td>1.314</td>
<td></td>
</tr>
<tr>
<td>Subtotal mantención</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Localidad: La Turbina, Chimbarongo
Sup. BF2 600 m²

<table>
<thead>
<tr>
<th>Jornadas</th>
<th>Hombre</th>
<th>Tractor c/impl.</th>
<th>Animal</th>
<th>Insumos</th>
<th>Total c/d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mes</td>
<td>Jor</td>
<td>Horas</td>
<td>Jor</td>
<td>$</td>
</tr>
<tr>
<td>Preparación suelo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aradura</td>
<td>May</td>
<td>0.2</td>
<td>8.000</td>
<td>1.600</td>
<td></td>
</tr>
<tr>
<td>Rastraje disco</td>
<td>May</td>
<td>0.2</td>
<td>8.000</td>
<td>1.600</td>
<td></td>
</tr>
<tr>
<td>Pala</td>
<td>May</td>
<td>0.2</td>
<td>6.000</td>
<td>1.200</td>
<td></td>
</tr>
<tr>
<td>Siembra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acarreo semillas y fertilizantes</td>
<td>May</td>
<td>0.02</td>
<td>5.000</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Aplicación fertilizante</td>
<td>May</td>
<td>0.08</td>
<td>5.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siembra pradera</td>
<td>May</td>
<td>0.04</td>
<td>5.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tapado</td>
<td>May</td>
<td>0.08</td>
<td>5.000</td>
<td>0.5</td>
<td>5.000</td>
</tr>
<tr>
<td>Subtotal establecimiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19.988</td>
</tr>
<tr>
<td>Manejo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herbicida pradera</td>
<td>Sep</td>
<td>0.08</td>
<td>5.000</td>
<td></td>
<td>622</td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Sep</td>
<td>0.3</td>
<td>12.000</td>
<td>3.600</td>
<td></td>
</tr>
<tr>
<td>Talud desagüe</td>
<td>Oct</td>
<td>0.5</td>
<td>5.000</td>
<td>2.500</td>
<td></td>
</tr>
<tr>
<td>Apretarir</td>
<td>Oct</td>
<td>0.4</td>
<td>5.000</td>
<td>2.000</td>
<td></td>
</tr>
<tr>
<td>Riego</td>
<td>Oct</td>
<td>0.4</td>
<td>5.000</td>
<td>2.000</td>
<td></td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Oct</td>
<td>0.6</td>
<td>12.000</td>
<td>7.200</td>
<td></td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Nov</td>
<td>0.6</td>
<td>12.000</td>
<td>7.200</td>
<td></td>
</tr>
<tr>
<td>Riego</td>
<td>Nov</td>
<td>0.08</td>
<td>5.000</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Dic</td>
<td>0.6</td>
<td>12.000</td>
<td>7.200</td>
<td></td>
</tr>
<tr>
<td>Riego</td>
<td>Dic</td>
<td>0.08</td>
<td>5.000</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Ene</td>
<td>0.6</td>
<td>12.000</td>
<td>7.200</td>
<td></td>
</tr>
<tr>
<td>Apretirar</td>
<td>Ene</td>
<td>0.4</td>
<td>5.000</td>
<td>2.000</td>
<td></td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Feb</td>
<td>0.6</td>
<td>12.000</td>
<td>7.200</td>
<td></td>
</tr>
<tr>
<td>Riego</td>
<td>Feb</td>
<td>0.08</td>
<td>5.000</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>Subtotal mantención</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>48.222</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>68.220</td>
</tr>
</tbody>
</table>
Uso de Biofiltros para mejorar la calidad del agua de riego

Localidad: Liceo Agrícola El Carmen, San Fernando
Sup. BF2 480 m²

<table>
<thead>
<tr>
<th>Jornadas</th>
<th>Labores</th>
<th>Hombre</th>
<th>Tractor c/impl.</th>
<th>Animal</th>
<th>Insumos</th>
<th>Total c/d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Preparación suelo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aradura</td>
<td>May</td>
<td>0,15675</td>
<td>8.000</td>
<td></td>
<td>1.254</td>
</tr>
<tr>
<td></td>
<td>Rastraje disco</td>
<td>May</td>
<td>0,285</td>
<td>6.000</td>
<td></td>
<td>2.280</td>
</tr>
<tr>
<td></td>
<td>Pala</td>
<td>May</td>
<td>0,285</td>
<td>6.000</td>
<td></td>
<td>1.710</td>
</tr>
<tr>
<td></td>
<td>Siembra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acarreo semillas y fertilizantes</td>
<td>May</td>
<td>0,03</td>
<td>5.000</td>
<td></td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>Aplicación fertilizante</td>
<td>May</td>
<td>0,06</td>
<td>5.000</td>
<td>Urea</td>
<td>3.007</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SFT</td>
<td>1.941</td>
</tr>
<tr>
<td></td>
<td>Siembra pradera</td>
<td>May</td>
<td>0,06</td>
<td>5.000</td>
<td>Semilla</td>
<td>6.502</td>
</tr>
<tr>
<td></td>
<td>Tapado</td>
<td>May</td>
<td>0,14</td>
<td>5.000</td>
<td>0,5</td>
<td>3.214</td>
</tr>
<tr>
<td></td>
<td>Resiembrado y tapado</td>
<td>Jun</td>
<td>0,2</td>
<td>5.000</td>
<td>0,5</td>
<td>14.378</td>
</tr>
<tr>
<td></td>
<td>Subtotal establecimiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>34.429</td>
</tr>
<tr>
<td></td>
<td>Manejo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Desagüe</td>
<td>Ago</td>
<td>0,57</td>
<td>5.000</td>
<td></td>
<td>2.857</td>
</tr>
<tr>
<td></td>
<td>Herbicida pradera</td>
<td>Ago</td>
<td>0,06</td>
<td>5.000</td>
<td>MCPA (S)</td>
<td>351</td>
</tr>
<tr>
<td></td>
<td>Corte de pradera</td>
<td>Sep</td>
<td>0,3</td>
<td>12.000</td>
<td></td>
<td>3.600</td>
</tr>
<tr>
<td></td>
<td>Riego</td>
<td>Oct</td>
<td>0,14</td>
<td>5.000</td>
<td></td>
<td>714</td>
</tr>
<tr>
<td></td>
<td>Cortar pradera</td>
<td>Oct</td>
<td>0,6</td>
<td>12.000</td>
<td></td>
<td>7.200</td>
</tr>
<tr>
<td></td>
<td>Cortar pradera</td>
<td>Nov</td>
<td>0,6</td>
<td>12.000</td>
<td></td>
<td>7.200</td>
</tr>
<tr>
<td></td>
<td>Riego</td>
<td>Nov</td>
<td>0,06</td>
<td>5.000</td>
<td></td>
<td>286</td>
</tr>
<tr>
<td></td>
<td>Apretilar</td>
<td>Nov</td>
<td>0,06</td>
<td>5.000</td>
<td></td>
<td>286</td>
</tr>
<tr>
<td></td>
<td>Herbicida pradera</td>
<td>Nov</td>
<td>0,06</td>
<td>5.000</td>
<td>Lontrel</td>
<td>1.484</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mcpa</td>
<td>638</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fol-weet</td>
<td>203</td>
</tr>
<tr>
<td></td>
<td>Cortar pradera</td>
<td>Dec</td>
<td>0,6</td>
<td>12.000</td>
<td></td>
<td>7.200</td>
</tr>
<tr>
<td></td>
<td>Riego</td>
<td>Dec</td>
<td>0,09</td>
<td>5.000</td>
<td></td>
<td>429</td>
</tr>
<tr>
<td></td>
<td>Cortar pradera</td>
<td>Ene</td>
<td>0,6</td>
<td>12.000</td>
<td></td>
<td>7.200</td>
</tr>
<tr>
<td></td>
<td>Riego</td>
<td>Ene</td>
<td>0,09</td>
<td>5.000</td>
<td></td>
<td>429</td>
</tr>
<tr>
<td></td>
<td>Cortar pradera</td>
<td>Feb</td>
<td>0,6</td>
<td>12.000</td>
<td></td>
<td>7.200</td>
</tr>
<tr>
<td></td>
<td>Riego (3)</td>
<td>Feb</td>
<td>0,06</td>
<td>5.000</td>
<td></td>
<td>286</td>
</tr>
<tr>
<td></td>
<td>Subtotal mantenimiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50.133</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>84.562</td>
</tr>
</tbody>
</table>
Uso de Biofiltros para mejorar la calidad del agua de riego

Localidad: Morza, Teno
Sup. BF2
400 m²

Jornadas

<table>
<thead>
<tr>
<th>Labores</th>
<th>Hombre</th>
<th>Tractor c/impl.</th>
<th>Animal</th>
<th>Insumos</th>
<th>Total c/d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparación suelo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aradura sincel</td>
<td>May</td>
<td>0,4</td>
<td>8.000</td>
<td></td>
<td>3.157</td>
</tr>
<tr>
<td>Rastraje disco</td>
<td>May</td>
<td>0,3</td>
<td>8.000</td>
<td></td>
<td>2.162</td>
</tr>
<tr>
<td>Pala</td>
<td>May</td>
<td>0,8</td>
<td>6.000</td>
<td></td>
<td>4.865</td>
</tr>
<tr>
<td>Herbicida</td>
<td>Jun</td>
<td>0,1</td>
<td>5.000</td>
<td>MCPA (Sal) 30,0 cc</td>
<td>114 452</td>
</tr>
<tr>
<td>Sacado piedras</td>
<td>Jun</td>
<td>0,5</td>
<td>1,1</td>
<td>5.000</td>
<td>8.109</td>
</tr>
<tr>
<td>Siembra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acarreo semillas y fertilizantes</td>
<td>Jun</td>
<td>0,03</td>
<td>5.000</td>
<td></td>
<td>135</td>
</tr>
<tr>
<td>Aplicación fertilizante</td>
<td>Jun</td>
<td>0,1</td>
<td>5.000</td>
<td>Urea 7,2 kg</td>
<td>315 2.538</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SFT 4,8 kg</td>
<td>337 1.618</td>
</tr>
<tr>
<td>Siembra pradera</td>
<td>Jun</td>
<td>0,1</td>
<td>5.000</td>
<td>Semilla 2,8 kg</td>
<td>1.850 5.450</td>
</tr>
<tr>
<td>Tapado</td>
<td>Jun</td>
<td>0,1</td>
<td>5.000</td>
<td>0,5 5.000</td>
<td>3.176</td>
</tr>
<tr>
<td>Resiembra pradera y tapado</td>
<td>Jun</td>
<td>0,3</td>
<td>5.000</td>
<td>Semilla 3,0 kg</td>
<td>1.850 6.900</td>
</tr>
<tr>
<td>Subtotal establecimiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>39.563</td>
</tr>
<tr>
<td>Manejo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herbicida pradera</td>
<td>Sep</td>
<td>0,2</td>
<td>5.000</td>
<td>MCPA (Sal) 30,0 cc</td>
<td>114 1.128</td>
</tr>
<tr>
<td>Arranca de maleza en pradera</td>
<td>Sep</td>
<td>0,1</td>
<td>5.000</td>
<td></td>
<td>676</td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Oct</td>
<td>0,2</td>
<td>12.000</td>
<td></td>
<td>2.400</td>
</tr>
<tr>
<td>Riego</td>
<td>Oct</td>
<td>0,03</td>
<td>5.000</td>
<td></td>
<td>136</td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Oct</td>
<td>0,4</td>
<td>12.000</td>
<td></td>
<td>4.800</td>
</tr>
<tr>
<td>Apretiar</td>
<td>Oct</td>
<td>0,3</td>
<td>5.000</td>
<td></td>
<td>1.351</td>
</tr>
<tr>
<td>Limpiar desagüe</td>
<td>Oct</td>
<td>0,3</td>
<td>5.000</td>
<td></td>
<td>1.351</td>
</tr>
<tr>
<td>Riego</td>
<td>Nov</td>
<td>0,1</td>
<td>5.000</td>
<td></td>
<td>405</td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Nov</td>
<td>0,4</td>
<td>12.000</td>
<td></td>
<td>4.800</td>
</tr>
<tr>
<td>Herbicida pradera</td>
<td>Dic</td>
<td>0,2</td>
<td>5.000</td>
<td>Lontrel 120,0 cc</td>
<td>2.874 3.888</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MCPA 400,0 cc</td>
<td>1.520 1.520</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fol-weet 40,0 cc</td>
<td>324 324</td>
</tr>
<tr>
<td>Riego</td>
<td>Dic</td>
<td>0,1</td>
<td>5.000</td>
<td></td>
<td>676</td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Dic</td>
<td>0,4</td>
<td>12.000</td>
<td></td>
<td>4.800</td>
</tr>
<tr>
<td>Herbicida pradera</td>
<td>Ene</td>
<td>0,2</td>
<td>5.000</td>
<td>Lontrel 120,0 cc</td>
<td>2.874 3.888</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MCPA 400,0 cc</td>
<td>1.520 1.520</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fol-weet 60,0 cc</td>
<td>487 487</td>
</tr>
<tr>
<td>Riego</td>
<td>Ene</td>
<td>0,4</td>
<td>1.200</td>
<td></td>
<td>4.800</td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Feb</td>
<td>0,1</td>
<td>5.000</td>
<td></td>
<td>541</td>
</tr>
<tr>
<td>Riego</td>
<td>Feb</td>
<td>0,4</td>
<td>12.000</td>
<td></td>
<td>4.800</td>
</tr>
<tr>
<td>Subtotal mantención</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>44.829</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>83.392</td>
</tr>
</tbody>
</table>
Localidad: Tres Esquinas, Molina

| Sup. BF2 | 400 m² |

<table>
<thead>
<tr>
<th>Jornadas</th>
<th>Mes</th>
<th>Hombre</th>
<th>Tractor c/impl.</th>
<th>Animal</th>
<th>Insumos</th>
<th>Total c/d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparación suelo</td>
<td>May</td>
<td>0,1155</td>
<td>8.000</td>
<td></td>
<td></td>
<td>924</td>
</tr>
<tr>
<td>Aradera</td>
<td>May</td>
<td>0,2277</td>
<td>8.000</td>
<td></td>
<td></td>
<td>1.822</td>
</tr>
<tr>
<td>Pala</td>
<td>May</td>
<td>0,33</td>
<td>6.000</td>
<td></td>
<td></td>
<td>1.980</td>
</tr>
<tr>
<td>Siembra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acarreo semillas y fertilizantes</td>
<td>May</td>
<td>0,1</td>
<td>5.000</td>
<td></td>
<td></td>
<td>500</td>
</tr>
<tr>
<td>Aplicación fertilizante</td>
<td>May</td>
<td>0,1</td>
<td>5.000</td>
<td>Urea</td>
<td>7,2 kg</td>
<td>315</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Urea</td>
<td>5.000</td>
<td>337</td>
<td>1.618</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Urea</td>
<td>5.000</td>
<td>4,8 kg</td>
<td>315</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SFT</td>
<td>4,8 kg</td>
<td>337</td>
<td>1.618</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SFT</td>
<td>4,8 kg</td>
<td>337</td>
<td>1.618</td>
</tr>
<tr>
<td>Siembra pradera</td>
<td>May</td>
<td>0,1</td>
<td>5.000</td>
<td>Semilla</td>
<td>2,8 kg</td>
<td>1.850</td>
</tr>
<tr>
<td>Tapado</td>
<td>May</td>
<td>0,2</td>
<td>5.000</td>
<td>0,5</td>
<td>5.000</td>
<td>3.500</td>
</tr>
<tr>
<td>Construcción desagüe, siembra y tapado</td>
<td>Oct</td>
<td>0,2</td>
<td>5.000</td>
<td>0,33</td>
<td>7.500</td>
<td>3.475</td>
</tr>
<tr>
<td>Subtotal establecimiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19.941</td>
</tr>
<tr>
<td>Manejo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herbicida pradera</td>
<td>Ago</td>
<td>0,1</td>
<td>5.000</td>
<td>MCPA (sal)</td>
<td>12 cc</td>
<td>46</td>
</tr>
<tr>
<td>Corte de pradera</td>
<td>Sep</td>
<td>0,2</td>
<td>12.000</td>
<td></td>
<td></td>
<td>2.400</td>
</tr>
<tr>
<td>Resiembra pradera</td>
<td>Oct</td>
<td>0,1</td>
<td>5.000</td>
<td>0,1</td>
<td>7.500</td>
<td>Semilla</td>
</tr>
<tr>
<td>Corte de pradera</td>
<td>Oct</td>
<td>0,03</td>
<td>5.000</td>
<td></td>
<td></td>
<td>165</td>
</tr>
<tr>
<td>Riego</td>
<td>Nov</td>
<td>0,07</td>
<td>5.000</td>
<td></td>
<td></td>
<td>330</td>
</tr>
<tr>
<td>Apretilar</td>
<td>Nov</td>
<td>0,33</td>
<td>5.000</td>
<td></td>
<td></td>
<td>1.850</td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Dic</td>
<td>0,4</td>
<td>12.000</td>
<td></td>
<td></td>
<td>4.800</td>
</tr>
<tr>
<td>Riego</td>
<td>Dic</td>
<td>0,1</td>
<td>5.000</td>
<td></td>
<td></td>
<td>500</td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Ene</td>
<td>0,1</td>
<td>5.000</td>
<td></td>
<td></td>
<td>500</td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Ene</td>
<td>0,4</td>
<td>12.000</td>
<td></td>
<td></td>
<td>4.800</td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Feb</td>
<td>0,4</td>
<td>12.000</td>
<td></td>
<td></td>
<td>4.800</td>
</tr>
<tr>
<td>Riego</td>
<td>Feb</td>
<td>0,1</td>
<td>5.000</td>
<td></td>
<td></td>
<td>500</td>
</tr>
<tr>
<td>Subtotal mantención</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32.150</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>52.091</td>
</tr>
</tbody>
</table>
Localidad: Lo Valdivia, Sagrada Familia

Sup. BF2
480 m²

<table>
<thead>
<tr>
<th>Labores</th>
<th>Mes</th>
<th>Jornadas</th>
<th>Tractor c/impl.</th>
<th>Animal</th>
<th>Insumos</th>
<th>Total c/d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparación suelo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aradura</td>
<td>May</td>
<td>0,3</td>
<td>8.000</td>
<td></td>
<td></td>
<td>2.514</td>
</tr>
<tr>
<td>Rastreo disco</td>
<td>May</td>
<td>0,7</td>
<td>8.000</td>
<td></td>
<td></td>
<td>5.714</td>
</tr>
<tr>
<td>Aplicación nitrogenada</td>
<td>May</td>
<td>0,1</td>
<td>5.000</td>
<td></td>
<td>Urea</td>
<td>3.414</td>
</tr>
<tr>
<td>Siembra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acarreo semillas y fertilizantes</td>
<td>May</td>
<td>0,03</td>
<td>5.000</td>
<td></td>
<td>Urea</td>
<td>150</td>
</tr>
<tr>
<td>Aplicación fertilizante</td>
<td>May</td>
<td>0,06</td>
<td>5.000</td>
<td></td>
<td>Urea</td>
<td>3.009</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SFT</td>
<td>1.955</td>
</tr>
<tr>
<td>Siembra pradera</td>
<td>May</td>
<td>0,06</td>
<td>5.000</td>
<td></td>
<td>Semilla</td>
<td>13.805</td>
</tr>
<tr>
<td>Tapado</td>
<td>May</td>
<td>0,1</td>
<td>5.000</td>
<td>0,5</td>
<td>5.000</td>
<td>3.200</td>
</tr>
<tr>
<td>Resiembra pradera y tapado</td>
<td>Jun</td>
<td>0,07</td>
<td>5.000</td>
<td>0,25</td>
<td>1.250</td>
<td>863</td>
</tr>
<tr>
<td>Subtotal establecimiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33.145</td>
</tr>
<tr>
<td>Manejo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desagüe</td>
<td>Ago</td>
<td>2,57</td>
<td>5.000</td>
<td></td>
<td></td>
<td>12.850</td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Sep</td>
<td>0,3</td>
<td>12.000</td>
<td></td>
<td></td>
<td>3.600</td>
</tr>
<tr>
<td>Riego</td>
<td>Sep</td>
<td>0,14</td>
<td>5.000</td>
<td></td>
<td></td>
<td>714</td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Oct</td>
<td>0,6</td>
<td>12.000</td>
<td></td>
<td></td>
<td>7.200</td>
</tr>
<tr>
<td>Riego</td>
<td>Oct</td>
<td>0,14</td>
<td>5.000</td>
<td></td>
<td></td>
<td>714</td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Nov</td>
<td>0,6</td>
<td>12.000</td>
<td></td>
<td></td>
<td>7.200</td>
</tr>
<tr>
<td>Riego</td>
<td>Nov</td>
<td>0,20</td>
<td>5.000</td>
<td></td>
<td></td>
<td>1.000</td>
</tr>
<tr>
<td>Apretillar</td>
<td>Dic</td>
<td>0,57</td>
<td>5.000</td>
<td></td>
<td></td>
<td>2.957</td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Dic</td>
<td>0,6</td>
<td>12.000</td>
<td></td>
<td></td>
<td>7.200</td>
</tr>
<tr>
<td>Riego</td>
<td>Dic</td>
<td>0,06</td>
<td>5.000</td>
<td></td>
<td></td>
<td>286</td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Ene</td>
<td>0,11</td>
<td>5.000</td>
<td></td>
<td></td>
<td>571</td>
</tr>
<tr>
<td>Cortar pradera</td>
<td>Ene</td>
<td>0,6</td>
<td>12.000</td>
<td></td>
<td></td>
<td>7.200</td>
</tr>
<tr>
<td>Riego</td>
<td>Feb</td>
<td>0,09</td>
<td>5.000</td>
<td></td>
<td></td>
<td>429</td>
</tr>
<tr>
<td>Subtotal mantención</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>59.029</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>92.174</td>
</tr>
</tbody>
</table>
Uso de Biofiltros para mejorar la calidad del agua de riego

Localidad: Los Nilches, Curicó
Sup. BF2: 680 m²

<table>
<thead>
<tr>
<th>Labores</th>
<th>Mes</th>
<th>Jornada</th>
<th>Horas</th>
<th>Tractor c/impl.</th>
<th>Animal</th>
<th>Total c/d</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparación suelo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limpia sector</td>
<td>Sep</td>
<td>1,74</td>
<td>5.000</td>
<td></td>
<td></td>
<td>8.696</td>
<td></td>
</tr>
<tr>
<td>Rastría</td>
<td>Sep</td>
<td>0,10</td>
<td>8.000</td>
<td></td>
<td></td>
<td>834</td>
<td></td>
</tr>
<tr>
<td>Aradura</td>
<td>Oct</td>
<td>0,16</td>
<td>8.000</td>
<td></td>
<td></td>
<td>1.308</td>
<td></td>
</tr>
<tr>
<td>Rastría</td>
<td>Oct</td>
<td>0,10</td>
<td>8.000</td>
<td></td>
<td></td>
<td>1.070</td>
<td></td>
</tr>
</tbody>
</table>

| Siembra | Oct | 0,17 | 5.000 | | | 834 | |

| **Acarreo semillas y fertilizantes** | Oct | 0,0 | 5.000 | | Urea 12,2 | 337 | 4.461 |

| **Aplicación fertilizante** | Oct | 0,07 | 5.000 | | Urea 12,2 | 337 | 4.461 |

| **Siembra pradera** | Oct | 0,07 | 5.000 | | SFT 8,2 | 315 | 2.583 |

| **Tapado** | Oct | 0,17 | 5.000 | | Semilla 4,8 | 1.850 | 9.230 |

| **Subtotal establecimiento** | | | | | | | 3.950 |

| **Manejo** | | | | | | | 52.457 |

| Desagüe | Oct | 0,7 | 5.000 | | | 3.500 | |

| Cortar pradera | Oct | 0,8 | 12.000 | | | 9.600 | |

| Cortar pradera | Nov | 0,8 | 12.000 | | | 9.600 | |

| Herbicida pradera | Dec | 0,07 | 5.000 | | Lontrel 47 | 1.104 | 1.454 |

| Cortar pradera | Dec | 0,07 | 5.000 | | Fol-weet 23,4 | 380 | 380 |

| Apretillar | Dec | 0,52 | 5.000 | | | 2.600 | |

| Riego | Dec | 0,17 | 5.000 | | | 850 | |

| Cortar pradera | Ene | 0,8 | 12.000 | | | 9.600 | |

| Cortar pradera | Feb | 0,8 | 12.000 | | | 9.600 | |

| Subtotal mantención | | | | | | 61.588 | |

| **Total** | | | | | | 94.045 | |
ANEXO 3.
FOTOGRAFÍAS

Factores que predisponen a la contaminación difusa de las aguas de escorrentía superficial

Foto 16. Aplicación mecanizada de fertilizantes minerales. Foto: Sergio González M.

Foto 18. Aplicación de plaguicidas sobre el follaje. Foto: folleto de AChS.

Foto 19. Prácticas que desnudan la superficie de los suelos. Foto: Sergio González M.

Foto 20. Riego erosivo. Foto: Francisco Tapia F.
GLOSARIO

Acuífero: formación geológica subterránea compuesta de grava, arena o piedra porosa, capaz de almacenar y rendir agua. Un acuífero es aquella área bajo la superficie de la tierra donde el agua de la superficie (lluvia, por ejemplo) percola y se almacena.

Adsorción: tendencia de compuestos como átomos, iones o moléculas, a adherirse a las partículas del suelo, especialmente a la materia orgánica y las arcillas.

Aeróbico: un ambiente aeróbico es rico en oxígeno, a diferencia de uno anaeróbico, donde el oxígeno está ausente. Este concepto se aplica no sólo a organismos, sino también a los procesos implicados (metabolismo aerobio) y a los ambientes donde se realizan.

Aguas continentales: cuerpos de aguas permanentes que se encuentran en el interior de la tierra, alejados de las zonas costeras (excepto por las desembocaduras de los ríos y otras corrientes de agua). También son zonas cuyas propiedades y usos están dominados por inundaciones permanentes, estacionales o intermitentes. Ejemplos de aguas continentales: ríos, lagos, llanuras de inundación, reservas, humedales y sistemas salinos de interior.

Aguas superficiales: aguas continentales que se encuentran en la superficie de la tierra. Se dividen en:

- **Corrientes:** masas de agua que se mueven en una misma dirección y pueden circular continuamente, como los ríos y los arroyos.

- **Estancadas:** aguas interiores que no presentan corriente continua visible, como los lagos, las lagunas, las charcas y los pantanos.

Aguas subsuperficiales: aguas que se encuentran por debajo de la superficie del terreno y por debajo de los reservorios de agua superficial.

Biomasa: es la energía solar convertida por la vegetación en materia orgánica.

Coeficiente de partición (K_{oc}): medida que indica la tendencia de un compuesto a adherirse a las partículas del suelo. Sirve para indicar el riesgo contaminante de un plaguicida respecto de las aguas subterráneas. Ver página XX.

Coloides: muchas de las propiedades químicas del suelo se deben a la presencia de materiales que presentan carga eléctrica. Estos materiales son conocidos como “coloides del suelo” y abarcan a las partículas de arcilla y materia orgánica humificada.

Contaminación difusa: contaminación originada por una multiplicidad de pequeñas descargas, cuyos aportes no están localizados ni son continuos, y donde el acceso de las aguas residuales a los cursos/cuerpos de aguas es por derrame o filtración a través del suelo, dentro de una cuenca. Ver páginas XX a XX.

Cuerpo de agua: masa o extensión de agua, como un lago, río, mar, océano o acuífero. Puede ser natural o artificial, contener agua salada o dulce.
Denitrificación: proceso biológico a través del cual el nitrógeno es devuelto a la atmósfera desde el suelo, en forma de nitrógeno gaseoso y óxido nitroso (ver página XX).

Desorción: proceso opuesto a la adsorción, en que una molécula o átomo adherido en una superficie se separa de ésta.

Escorrentía: se refiere al caudal de agua que fluye por la superficie del terreno y que es excedentaria del riego o de las precipitaciones

Estrata: se refiere a asociaciones vegetales de distinta altura. Ejemplos: estrata herbácea, arbustiva o arbórea.

Eutroficación/eutrofización: es un proceso natural de envejecimiento de agua estancada o de corriente lenta con exceso de nutrientes y que acumula en el fondo materia vegetal en descomposición. / Aporte masivo de nutrientes inorgánicos en un ecosistema acuático.

Fase líquida del suelo: está formada por la solución del suelo que proporciona los nutrientes a las plantas y es el medio en el que se lleva a cabo la mayoría de las reacciones químicas del suelo.

Fotólisis: disociación o degradación de moléculas orgánicas complejas por efecto de la luz.

Hidrólisis: reacción química del agua con una sustancia, que provoca una degradación o separación de las estructuras de esta última, transformándola en una o más sustancias distintas a la original.

Ingredientes activos: es la parte biológicamente activa del producto fitosanitario, presente en una formulación independientemente de su nombre comercial.

Lixiviación: pérdida de elementos nutritivos solubles arrastrados por el exceso de agua (agua de gravitación) a niveles más profundos del suelo.

Metabólicos: procesos metabólicos o metabolismo es el conjunto de reacciones y procesos físico-químicos que ocurren en una célula. Estos complejos procesos interrelacionados son la base de la vida a nivel molecular, y permiten las diversas actividades de las células: crecer, reproducirse, mantener sus estructuras, responder a estímulos, etc.

Metabolito: sustancia resultante de procesos de transformación físicos, químicos o biológicos de un producto fitosanitario.

Microgramo (µg): millonésima parte de 1 g (1 x 10^{-9} g) o milésima de miligramo. Se representa por µg.

Napa freática: es el acuífero más cercano a la superficie del suelo.

Nitrificación: proceso en el cual el amonio se transforma, primero en nitrito y éste en nitrato, mediante la acción de las bacterias aerobias del suelo.

Nitrate (NO₃): los nitratos se forman en la naturaleza por la descomposición de compuestos nitrogenados tales como las proteínas, la urea, etc. Es la forma más común en que las plantas absorben el nitrógeno y son una parte esencial de los abonos. Las plantas los convierten de nuevo en compuestos orgánicos nitrogenados, como los aminoácidos.

Nitrito (NO₂): compuesto químico formado en el proceso de nitrificación y se produce de la descomposición del amonio.

Nivel de no detección: concentración de un plaguicida en niveles tan bajos que, si bien son detectables, no son cuantificables con los equipos disponibles.

Partículas edáficas: partículas del suelo (arena, limo y arcillas).
Perfil del suelo: es un corte vertical del suelo desde la superficie, en la que se pueden distinguir varios horizontes.

Rizósfera: la rizosfera es una parte del suelo inmediata a las raíces donde tiene lugar una interacción dinámica con los microorganismos. Las características químicas y biológicas de la rizósfera se manifiestan en una porción de apenas 1 mm de espesor a partir de las raíces. En un sentido más amplio, la rizósfera se puede considerar como la porción de suelo en la que están las raíces de las plantas, ya que es un zona donde se dan toda una serie de relaciones físicas y químicas que afectan a la estructura del suelo y a los organismos que viven en él, proporcionándole propiedades diferentes.

Saturación de fósforo: se refiere a que los sitios de intercambio del suelo están ocupados en su totalidad por este elemento y por tanto queda libre en la solución del suelo.

Saturación del suelo: condición en que los poros del suelo se encuentran ocupados por agua, desplazando el oxígeno de éstos (suelo anegado).

Sedimentos: en el caso de este texto se refiere a partículas sólidas, que pueden ser transportadas en el agua de riego o lluvia. Las más finas viajan en suspensión y las más gruesas tienden a precipitar o decantarse sobre el suelo.

Sitio-específico: se refiere a que las recomendaciones no se pueden generalizar, sino que son específicas para cada condición agroecológica.