2.2. Revistas
URI permanente para esta comunidad
Examinar
Examinando 2.2. Revistas por Autor "Aguilera, Paula"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
- Do root interactions between wheat and non-mycorrhizal ancestral plants influence fungal activity and soil quality in an Andisol?
Autor: Castillo, Claudia; Solano, Jaime; Aguilera, Paula; Sacha, Debouzy; Catalán, Rocío; Ruiz, Antonieta; Souza C., Pedro de; Sieverding, Ewald; Borie B., Fernando
Institución: Instituto de Investigaciones Agropecuarias
Serie Documental: Chilean Journal of Agricultural Research
N° Documento: v. 83(5) p. 589-601
Objetivos de desarrollo sostenible
Cover crops in sustainable agrosystems are becoming more and more applied. However, legacy effects on the growth of companion plants or following crops in rotation systems are still poorly understood, especially when Andean and ancestral crops are involved. In this work, two wheat (Triticum aestivum L.) cultivars differing in P efficiency (Kirón higher than Chevignon) were cropped together with two non-mycorrhizal plants, quinoa (Chenopodium quinoa Willd.) and amaranth (Amaranthus spp.), to study the interactions and the effects produced in the wheat rhizosphere, plant growth and mycorrhizal parameters at harvest. The plants were grown in a three-compartment plexiglass rhizobox containing an Andisol. The central compartment separated by a nylon mesh was used for the cover crops, and wheat was sown on each side. A habitual pre-crop rapeseed (Brassica napus L.), also non-mycorrhizal, was used as control. At harvest, soil (pH, available P, acid phosphatase, microbial-P), plant (phytomass, organic acid exudation, P uptake efficiency, Zn and Mn in shoots), and mycorrhizal properties (root colonization, glomalin, spore number, and hyphal density) were measured in both wheat rhizospheres. Results show that wheat cultivars differed in soil and plant characteristics affected by non-host plants being the most efficient one, better. Surprisingly, mycorrhizal propagules were not depressed, and even fungal spores with amaranth (10543 spores 100 g-1) increased 2.6-fold than control (3910 spores 100 g-1) in the P-efficient cultivar. Data obtained suggest being cautious in selecting the best wheat cultivar when using these ancestral crops, especially for wheat natives’ smallholders working in this type of soil.Enlace permanente: https://hdl.handle.net/20.500.14001/69123
Castillo, Claudia, Solano, Jaime, Aguilera, Paula, Sacha, Debouzy, Catalán, Rocío, Ruiz, Antonieta, Souza C., Pedro de, Sieverding, Ewald, Borie B., Fernando , (2023-10) Ver ítemCover crops in sustainable agrosystems are becoming more and more applied. However, legacy effects on the growth of companion plants or following crops in rotation systems are still poorly understood, especially when Andean and ancestral crops are involved. In this work, two wheat (Triticum aestivum L.) cultivars differing in P efficiency (Kirón higher than Chevignon) were cropped together with two non-mycorrhizal plants, quinoa (Chenopodium quinoa Willd.) and amaranth (Amaranthus spp.), to study the interactions and the effects produced in the wheat rhizosphere, plant growth and mycorrhizal parameters at harvest. The plants were grown in a three-compartment plexiglass rhizobox containing an Andisol. The central compartment separated by a nylon mesh was used for the cover crops, and wheat was sown on each side. A habitual pre-crop rapeseed (Brassica napus L.), also non-mycorrhizal, was used as control. At harvest, soil (pH, available P, acid phosphatase, microbial-P), plant (phytomass, organic acid exudation, P uptake efficiency, Zn and Mn in shoots), and mycorrhizal properties (root colonization, glomalin, spore number, and hyphal density) were measured in both wheat rhizospheres. Results show that wheat cultivars differed in soil and plant characteristics affected by non-host plants being the most efficient one, better. Surprisingly, mycorrhizal propagules were not depressed, and even fungal spores with amaranth (10543 spores 100 g-1) increased 2.6-fold than control (3910 spores 100 g-1) in the P-efficient cultivar. Data obtained suggest being cautious in selecting the best wheat cultivar when using these ancestral crops, especially for wheat natives’ smallholders working in this type of soil. - Intercropping wheat with ancestral non-mycorrhizal crops in a volcanic soil at early growth stage
Autor: Castillo, Claudia; Solano S., Jaime; Collinao, Mauricio; Catalán, Rocío; Campos, Pedro; Aguilera, Paula; Sieverding, Ewald; Borie B., Fernando
Serie Documental: Chilean Journal of Agricultural Research
N° Publicación: v. 82(4) p. 663-672
Intercropping is especially relevant for low-income farmers when crop production is developed in soils under the new scenario produced by climatic change, mainly water shortage and low availability of nutrients especially P. An example of this would happen in volcanic soils of Southern Chile with high P fixing capacity and where most cereals are cropped. The aim of this study was to compare the benefits obtained on soil biochemical properties and on wheat (Triticum aestivum L.) growth when sowed under monoculture or intercropped with non-mycorrhizal plants such as quinoa (Chenopodium quinoa Willd.), buckwheat (Fagopyrum esculentum Moench), canola (Brassica napus L.) and white lupin (Lupinus albus L.) Wheat plants parameters such as shoot growth and morphological root traits together with some soil biological and chemical characteristics were measured after 30 and 44 d of plant growing in pots under controlled conditions. Results showed nonsignificant differences on growth parameters (i.e., height and shoot/root biomass) and P acquisition between monocrop and intercropped wheat. Conversely, wheat root morphological traits namely total length, root area, and forks were greatly reduced (around 50%) regardless of plant species. Intercropping tended to increase P availability and significantly reduced rhizosphere soil pH, with the lowest levels observed for wheat-canola combination (from 7.5 to 5.6). Intercropping produced a slight reduction in mycorrhizal colonization but increased over 100% viable spores’ number and exerted a variable effect on the microbial C-biomass, with greater values observed in wheat-canola combination (1.49 mg g-1). These results encourage us to deepen the use of some new plant combinations in family farming carried out in volcanic soils.Enlace permanente: https://hdl.handle.net/20.500.14001/68780
Castillo, Claudia, Solano S., Jaime, Collinao, Mauricio, Catalán, Rocío, Campos, Pedro, Aguilera, Paula, Sieverding, Ewald, Borie B., Fernando , (2022-10) Ver ítemIntercropping is especially relevant for low-income farmers when crop production is developed in soils under the new scenario produced by climatic change, mainly water shortage and low availability of nutrients especially P. An example of this would happen in volcanic soils of Southern Chile with high P fixing capacity and where most cereals are cropped. The aim of this study was to compare the benefits obtained on soil biochemical properties and on wheat (Triticum aestivum L.) growth when sowed under monoculture or intercropped with non-mycorrhizal plants such as quinoa (Chenopodium quinoa Willd.), buckwheat (Fagopyrum esculentum Moench), canola (Brassica napus L.) and white lupin (Lupinus albus L.) Wheat plants parameters such as shoot growth and morphological root traits together with some soil biological and chemical characteristics were measured after 30 and 44 d of plant growing in pots under controlled conditions. Results showed nonsignificant differences on growth parameters (i.e., height and shoot/root biomass) and P acquisition between monocrop and intercropped wheat. Conversely, wheat root morphological traits namely total length, root area, and forks were greatly reduced (around 50%) regardless of plant species. Intercropping tended to increase P availability and significantly reduced rhizosphere soil pH, with the lowest levels observed for wheat-canola combination (from 7.5 to 5.6). Intercropping produced a slight reduction in mycorrhizal colonization but increased over 100% viable spores’ number and exerted a variable effect on the microbial C-biomass, with greater values observed in wheat-canola combination (1.49 mg g-1). These results encourage us to deepen the use of some new plant combinations in family farming carried out in volcanic soils.